
1

Designing a Dropbox-like File Storage Service
A Performance and Cost study

Hassaan Bukhari
School of Information Technology

York University
Toronto, Canada

hassaanb@yorku.ca

Fariborz Khanzadeh
School of Information Technology

York University
Toronto, Canada

fariborz@yorku.ca

Alejandro Ramirez
School of Information Technology

York University
Toronto, Canada

aramirez@yorku.ca

Abstract — In this paper we present a reference architecture of
a Dropbox-like file storage system by identifying its core
components and communication protocols. We also present a
deployment architecture that explains how our Dropbox-like file
storage system can be deployed in the Cloud. We chose Amazon as
a Cloud Provider to carry out a feasible implementation. We have
also evaluated key performance metrics by presenting hypothetical
scenarios. Optimal assumptions and estimates of user traffic and
data storage utilization are made in the paper. In addition, cost
parameters of cloud resources are evaluated with the actual dollar-
values, based on the pricing information available on Amazon Web
Services.

Keywords — Dropbox, Cloud File Storage, Synchronization,
Message Queuing, Amazon Web Services, Amazon S3, Amazon
SQS, DynamoDB, Performance, Cost.

I. INTRODUCTION

Cloud file storage services have become very popular
recently as they simplify the storage and exchange of our
digital resources among us and our multiple devices. The shift
from using single personal computers to using multiple devices
with different platforms and operating systems such as
smartphones and tablets, and their portable access from
different geographical locations at any time is believed to be
accountable for the massive popularity of cloud storage
services. These services usually provide a complete set of tools
for file storage, sharing, and automatic synchronization as their
three key features. At the same time they take advantage of the
benefits that cloud solutions provide inherently such as
availability, redundancy, and scalability.

However, not much is known about the internals of
commercial solutions such as Dropbox, Google Drive,
OneDrive, etc. as they are proprietary and closed. These
solutions rely on architecture and algorithms that are not
visible to the outside world. Therefore, in order to study and
propose a reference architecture for such services, we have
researched the architecture of the open source alternatives such
as ownCloud, SparkleShare, Syncany, and StackSync.

In terms of system deployment, we design a physical
environment based on our reference architecture and some of
the Amazon’s first services that are offered at a large scale,
namely Amazon S3, Amazon SQS, Amazon EC2 and Amazon
DynamoDB. We explain how each of these services functions
and is utilized by our solution.

Thereafter, we will analyze the performance of the
application based on the specifications of computing and data
storage services made available by Amazon on their website.
We will develop estimates and will simulate scenarios to show
performance variations. Based on those scenarios, we will
calculate monthly cost of Cloud services using the advertised
pricing information on Amazon website [18]. At last, we assess
the profitability of the application at a high-level.

The remainder of this paper is organized as follows:
Section II provides a summary of the related work. Section III
presents our reference architecture. Section IV presents the
proposed deployment architecture to build our system on top of
Amazon Web Services. Section V presents the analysis of
performance and cost metrics of the application with estimates
and scenarios. Finally, the conclusion is provided in section VI.

II. RELATED WORK

Little is known about the design, architecture, and
implementation of commercial personal cloud storage systems.
Drago et al. [1] have studied the architecture of Dropbox by
conducting performance measurements based on network
traffic traces. According to them, Dropbox file synchronization
is built using third-party libraries such as librsync [2].
However, not much is known about the details of the file
synchronization mechanism and metadata organization. The
same is true about other personal cloud storage providers such
as Google Drive, OneDrive, etc. Nevertheless, most of these
providers decouple the control flow from the data flow by
storing the files on separate storage servers, and processing the
data on separate application servers. For example, Dropbox
employs Amazon S3 for their data storage, and uses its own
private cloud for file synchronization and metadata
management. Li et al. [3] has represented the high level
architecture of the Dropbox as seen in Figure 1.

Dropbox uses a client application to monitor file changes in
specified folders. After a change notification is received, the
client application indexes the affected files. Then, the file is
compressed and sent to Amazon S3, and the file metadata is
sent to the Dropbox private cloud. The maximum size of an
object in Dropbox is 4MB. Files larger than that are split into
chunks of 4MB each. Dropbox reduces the amount of data
exchange by transmitting the updated chunks of a file only. It
also keeps a local copy of metadata information in each device.
Dropbox uses a cluster of notification servers for pushing
notifications about the updates to the clients. Lopez et al. [4],

2

on the other hand, propose using a messaging middleware for
change notifications as decoupling message delivery from
message processing is a key requirement for scalability. Using
a messaging middleware simplifies the overall architecture
since it also provides load balancing.

Figure 1. Dropbox High Level Architecture

III. LOGCAL ARCHITECTURE

Our reference architecture for a Dropbox-like cloud storage
system consists of five main components: Desktop Client
Application, Synchronization Service, Message Queuing
Service, Metadata Database, and the Cloud Storage back-end.
The proposed architecture of our system with the main
components and their interaction is presented in Figure 2
below. The Client Application and the Synchronization Service
interact through the Message Queuing Service. The
Synchronization Service also interacts with the Metadata
Database for data persistence. Client Application directly
interacts with the Cloud Storage back-end to upload and
download files. Our reference architecture is based on a loosely
coupled service oriented design that enables us to implement
and deploy it on different types of clouds including public,
private, and hybrid clouds.

Figure 2. Logical Architecture

A. Desktop Client

The Desktop Client Application monitors the folders that
are identified as workspace or sync folders and synchronizes
them with the remote Cloud Storage. The Desktop Client

interacts with the Synchronization Service to handle file
metadata updates (e.g. file name, size, modification date, etc.).
It also interacts with the backend Cloud Storage for storing the
actual files.

Some of the most important requirements of the Desktop
Client include upload and download of the files, detecting file
changes in the sync folder, and handling conflicts due to offline
or concurrent updates. The main components of the desktop
client are Watcher, Chunker, Indexer, and Internal DB as
described below.

• Watcher monitors the sync folders and notifies the
Indexer of any action performed by the user for
example when user create, delete, or update files or
folders.

• Chunker splits the files into smaller pieces called
chunks. To reconstruct a file, chunks will be joined
back together in the correct order. A chunking
algorithm can detect the parts of the files that have
been modified by user and only transfer those parts to
the Cloud Storage, saving on cloud storage space,
bandwidth usage, and synchronization time.

• Indexer processes the events received from the
Watcher and updates the internal database with
information about the chunks of the modified files.
Once the chunks are successfully submitted to the
Cloud Storage, the Indexer will communicate with the
Synchronization Service using the Message Queuing
Service to update the Metadata Database with the
changes.

• Internal Database keeps track of the chunks, files, their
versions, and their location in the file system.

B. Metadata Database

The Metadata Database is responsible for maintaining the
versioning and metadata information about files/chunks, users,
and workspaces. The Metadata Database can be a relational
database such as MySQL, or a NoSQL database service such
as Amazon DynamoDB. Regardless of the type of the
database, the Synchronization Service should be able to
provide a consistent view of the files using a database,
especially if more than one user work with the same file
simultaneously. Since NoSQL data stores do not support ACID
properties in favour of scalability and performance, we need to
incorporate the support for ACID properties programmatically
in the logic of our Synchronization Service in case we opt for
this kind of databases. However, using a relational database
can simplify the implementation of the Synchronization
Service as ACID properties are natively supported by them.
Selecting the type of the Metadata Database is a design
decision that should be made early in the design phase of the
system development life cycle.

The data that need to be stored in the Metadata Database
include data about the chunks, objects, users, and their devices
and workspaces (sync folders). The following key-value
schema describes the persistence data structure of our cloud
storage system in more details.

3

{
“chunk_id”: “string”,
“chunk_order”: “number”,
“object”:

{
“version”: “number”,
“is_folder”: “boolean”,
“modified”: “number”,
“file_name”: “string”,
“file_extention”: “string”,
“file_size”: “number”,
“file_path”: “string”,
“user”:

{
“user_name”: “string”,
“email”: “string”,
“quota_limit”: “number”,
“quota_used”: number,
“device”:

{
“device_name”: “string”
“sync_folder”: “string”
}

}
}

}

C. Synchronization Service

The Synchronization Service is the component that
processes file updates made by a client and applies these
changes to other subscribed clients. It also synchronizes
clients’ local databases with the information stored in the
Metadata Database. The Synchronization Service is the most
important part of the system architecture due to its critical role
in managing the metadata and synchronizing users’ files.
Desktop clients communicate with the Synchronization Service
to either obtain updates from the Cloud Storage, or send files
and updates to the Cloud Storage and potentially other users. If
a client was offline for a period of time, it polls the system for
new updates as soon as it goes online. When the
Synchronization Service receives an update request, it checks
with the Metadata Database for consistency and then proceeds
with the update. Subsequently, a notification is sent to all
subscribed users or devices to report the file update.

As a design goal, the Synchronization Service should be
designed in a way to transmit less data between clients and the
Cloud Storage in order to achieve better response time. To
meet this design goal, the Synchronization Service should
employ a differencing algorithm to reduce the volume of the
data that needs to be synchronized. Instead of transmitting
entire files from clients to server or vice versa, most of the file
synchronization algorithms just transmit the difference
between two versions of a file. Therefore, only the part of the
file that has been changed is transmitted. This also decreases
bandwidth consumption and cloud data storage for the end
user.

An essential part of the Synchronization Service is a
synchronization algorithm. Rsync[5] is one of the most popular
and high performance algorithms of this type that is able to
compute the difference among different copies of data. Rsync

partitions a file that is located on the server into several chunks
with fixed block sizes, and uses a hash function to calculate its
hash value to be sent to clients. The clients then use the hash
values to determine whether to update the local copy of a
chunk or not. Rsync is widely adopted by for data
synchronization due to its simplicity and high performance.

To be able to provide an efficient and scalable
synchronization protocol we consider using a communication
middleware between clients and the Synchronization Service.
The messaging middleware should provide scalable message
queuing and change notification to support a high number of
clients using pull or push strategies. This way, multiple
Synchronization Service instances can receive requests from a
global request queue, and the communication middleware will
be able balance their load.

D. Message Queuing Service

An important part of our reference architecture is a
messaging middleware that should be able to handle a
substantial amount of reads and writes. A scalable Message
Queuing Service that supports asynchronous message-based
communication between clients and the Synchronization
Service instances best fits the requirements of our application.
The Message Queuing Service supports asynchronous and
loosely coupled message-based communication between
distributed components of the system. The Message Queuing
Service should be of high performance, highly scalable, and be
able to persistently store any number of messages in a highly
available and reliable queue. The Message Queuing Service
also provides load balancing and elasticity for multiple
instances of the Synchronization Service.

Figre 3 illustrates two types of queues that are used in our
Message Queuing Service. The Request Queue is a global
queue that is shared among all clients. Clients’ requests to
update the Metadata Database through the Synchronization
Service will be sent to the Request Queue. The Response
Queues that correspond to individual subscribed clients are
responsible for delivering the update messages to each client.
Since a message will be deleted from the queue once received
by a client, we need to create separate Response Queues for
each client to be able to share an update message which should
be sent to multiple subscribed clients.

Message Queuing Service

Client 1

Client 2

Client 3

Response Queue 1

Response Queue 2

Response Queue 3

Request Queue

Synchronization

Service

Figure 3. Message Queuing Service

4

E. Cloud Storage

Cloud Storage stores the chunks of the files uploaded by
the users. Clients directly interact with the Cloud Storage to
send and receive objects using the API provided by the cloud
provider. The separation of the metadata from the object
storage enables our reference architecture to use any Cloud
Storage as the back-end data store.

F. File Processing

The sequence diagram in Figure 4 shows the interaction
between the components of the application in a scenario when
Client 1 updates a file that is shared with Client 2 and 3, so
they should receive the update too. If the other clients were not
online at the time of the update, the Message Queuing Service
keeps the update notifications in separate response queues for
them until they become online at a later time.

Figure 4. Sequence Diagram

IV. CLOUD DEPLOYMENT

For the purpose of this study, we chose Amazon as cloud
service provider because it is currently one of the major players
in the cloud computing market, with a proven maturity when
compared to others, gathers all the services required by our
system and offers data storage services at very low costs.

Amazon runs a world-wide e-commerce platform that
serves tens of millions customers at peak times using tens of
thousands of servers located in many data centers around the
world. There are strict operational requirements on Amazon’s
platform in terms of performance, reliability and efficiency,
and scalability.

Amazon offers compute, storage, databases and networking
services in the Cloud, which are collectively known as Amazon
Web Services (AWS). All services can be configured and
monitored from a single web-based console, and are offered
with a simple “pay-as-you-go” charging model. The most
relevant services for our reference architecture are Amazon
Simple Storage Service (S3), Amazon Simple Queue Service

(SQS), Amazon Elastic Compute Cloud (EC2), and Amazon
DynamoDB.

Amazon’s S3, SQS and EC2 services are among the first
utility computing services that are offered at a large scale. The
“Success Stories” on Amazon’s website describe some
experiences using these services: NASA’s Jet Propulsion
Laboratory (JPL) uses Amazon EC2 to process high resolution
satellite images that provide guidance and situational
awareness to its robots. In addition, JPL relies on Amazon
Cluster Compute Cloud Instances and Amazon SQS to deploy
massive computations with less effort. 6 Waves Limited, a
leading international publisher and developer of gaming
applications on the Facebook platform, uses Amazon EC2 and
Amazon S3 to host its social games with an audience of more
than 50 million players per month. ElephantDrive turns to
Amazon S3 to store client data, expanding their total amount of
storage by nearly 20 percent each week while avoiding
increased capital expenses [6].

Figure 5 depicts the overview of our deployment
architecture which is in direct relationship with the logical

Client 1 Client 2 Client 3
Synchronization

Service
Metadata DB Cloud Storage

Message

Queuing Service

commit(changes)

updateDB(changes)

OK

upload(chunks)

commit(changes)

updateClient(changes)

updateClient(changes)

updateClient(changes)

updateClient(changes)

download(chunks)

chunks

download(chunks)

OK

OK

chunks

5

architecture presented in the previous section. Each component
is explained in further detail below.

Figure 5. Deployment Architecture

A. Amazon S3 - Cloud Storage

Amazon S3 is a cloud storage service that offers software
developers capabilities for storing large volumes of data, with
additional features such as life cycle management and security.
Amazon claims its service offers infinite storage capacity,
unlimited data durability, 99.99% availability, and good data
access performance. Amazon S3 is designed to make web-
scale computing easier for developers. Amazon S3 provides a
simple web services interface that can be used to store and
retrieve any amount of data, at any time, from anywhere on the
web. It gives any developer access to the same highly scalable,
reliable, fast, and inexpensive data storage infrastructure that
Amazon uses to run its own global network of web sites [7].

Conceptually, Amazon S3 is an infinite store for objects of
variable size (minimum 1 Byte, maximum 5 GB). An object is
simply a byte container which is identified by a URI. Clients
can read and update S3 objects remotely using a SOAP or
REST-based interface; e.g., get(uri) returns an object and
put(uri, bytestream) writes a new version of the object [8].
Each object is associated to a bucket. That is, when a user
creates a new object, the user specifies into which bucket the
new object should be placed.

Our Desktop Application directly interacts with Amazon
S3 in order to store user files. Its integration with the operating
system permits to monitor a local folder and synchronizes it
with a remote bucket. When there is a change in the
synchronized folder, the application receives a notification to
process the event. Once the application identifies which file or
files have been modified or created, it will proceed to store it in
Amazon S3. In order to avoid any bottleneck, save traffic and
storage costs, the application transfers only those parts of files
(chunks) that have been modified or are new.

Amazon S3 provides different SDKs for easy integration
with third party technologies. These kits simplify programming

tasks by wrapping the underlying REST API. Our application
would use the API called com.amazonaws.services.s3.transfer
which provides a utility for managing transfers to Amazon S3.
This method is a high level Java class called TransferManager
that uploads data in parts using multiple connections and
threads, and achieves the highest throughput in comparison
with other popular S3 clients and programming libraries [9].
An example of how this method could be used in our system is
shown in Appendix A.

B. Amazon SQS - Message Queuing Service

Amazon SQS is a highly reliable and scalable message
delivery service that enables asynchronous message-based
communication between the distributed components of larger-
scale applications. Amazon SQS runs within Amazon’s high-
availability data centers, so queues will be available whenever
are needed. To prevent messages from being lost or becoming
unavailable, all messages are stored redundantly across
multiple servers and data centers [10].

Amazon SQS can deliver unlimited number of messages at
any time. The size of the message cannot be more than 256
KB. And it ensures at least 1 delivery of the message. It retains
message up to 14 days. It also provides batching of messages
up to 10 messages or 256 KB in total whichever is higher is
applicable. When a message is received, it becomes locked
while being processed. This keeps other application from
processing the message simultaneously. If the message
processing fails, the lock will expire and the message will be
available again. In the case where the application needs more
time for processing the lock timeout can be changed
dynamically via the change message visibility operation [10].

In order to achieve scalability, our Desktop Application
interacts with the Synchronization Service through Amazon
SQS. Every time a change in the local folder is detected by the
OS, our Desktop Application upload the affected chunks to
Amazon S3 and communicates to the Synchronization Service
in order to commit these changes to the metadata stored in
DynamoDB. Furthermore, our Desktop Application receives
notifications of committed changes from the Synchronization
Service to apply them to the local folder.

As any other distributed system, Amazon SQS is used as
message-passing mechanism between our components. This
not only helps in making the different components loosely
coupled, but also helps in building a more failure resilient
system overall. If one component is receiving and processing
requests faster than the other component (an unbalanced
producer consumer situation), buffering will help make the
overall system more resilient to bursts of traffic (or load).
Amazon SQS also acts as a transient buffer between
components. If a message is sent directly to a component, the
receiver will need to consume it at a rate dictated by the sender.
With message queues, sender and receiver are decoupled and
the queue service smoothens out any “spiky” message traffic
[11].

Thanks to our message-oriented communication, keeping
the local folder in sync with the metadata storage is
inexpensive, as any committed change is advertised as soon as

6

possible by means of asynchronous notifications. Amazon SQS
in our architecture provides elasticity to distributed objects. It
decouples sync control from the storage service, creates a
transparent load balancing mechanisms, and it simplifies one-
to-many communication.

However, a major limitation of Amazon SQS is that it does
not guarantee delivering the messages exactly once. It
guarantees delivery of the message at least once. That means
there might be duplicate messages delivered to our system. The
existence of duplicate messages comes from the fact that these
messages are copied to multiple servers in order to provide
high availability and increase the ability of parallel access [12].
According to Amazon, most of the time each message will be
delivered exactly once. But in spite of that, it seems better to
consider this aspect at the moment of building our components.
In order to be able to verify duplications, our Desktop
Application might use its internal database and our
Synchronization Service might use DynamoDB. In both cases,
these databases might be used to verify whether it is the first
time that a message is processed or not. This technique might
minimize any overhead caused by duplicate tasks execution.

Our Desktop Application and Synchronization Service
would interact with Amazon SQS principally through the APIs:
CreateQueue, DeleteQueue, SendMessage, ReceiveMessage
and DeleteMessage. CreateQueue creates queues for use with
AWS account. DeleteQueue deletes a queue. SendMessage
adds messages to a specific queue. ReceiveMessage returns
one or more messages from a queue. DeleteMessage removes a
previously received message from a queue. Examples of calls
to these methods can be found in Appendix B.

For the system security, we rely on the security of Amazon
SQS. Authentication mechanisms are provided to ensure that
messages stored in Amazon SQS queues are secured against
unauthorized access. Only authorized users can access to the
contents of queues. In order to keep the latency low, we would
not add any encryption to messages.

C. Amazon EC2 - Synchronization Service

Amazon EC2 is a web service that provides resizable
compute capacity in the Cloud. It is designed to make web-
scale cloud computing easier for developers. Amazon EC2
offers a highly reliable environment where instances can be
rapidly commissioned. The service runs within Amazon’s
proven network infrastructure and data centers. The EC2
Service Level Agreement commitment is 99.95% availability
for each region [13].

Amazon EC2 provides a wide selection of instance types
optimized to fit different use cases. Instance types comprise
varying combinations of CPU, memory, storage, and net-
working capacity. In our architecture, the Synchronization
Service runs on an instance type called “m3.medium” with 1
CPU Intel Xeon E5-2670 v2 (Ivy Bridge) and 3.75 GB RAM.
The software pre-configured is the Amazon machine image
called “JBoss powered by Bitnami” which comes with ready-
to-run versions of Apache, MySQL and JBoss.

Our Synchronization Service is a key component in our
middleware since it is in charge of managing the metadata to

achieve data in sync. Desktop clients communicate with the
Synchronization Service to obtain the changes occurred when
they were offline, commit new versions of files, and receive
events about remote modifications. Multiple instances might be
running simultaneously in order to cope with this workload.

We take advantage of Amazon EC2 to meet the scalability
requirements of our Synchronization Service. Amazon EC2
provides an Auto Scaling feature that permits define conditions
to scale up and down an arbitrary group of instances. Scaling
conditions can be defined to increase or decrease EC2 capacity
by a certain percentage. In case of scaling up, when Auto
Scaling detects that a condition has been met, it automatically
adds the requisite amount of Amazon EC2 instances to the
Auto Scaling Group. In case of scaling down, Auto Scaling
decides which EC2 instance within the group is terminated
once the scaling condition is met. When more than one
instance meets this criterion, Auto Scaling will terminate the
instance running for the longest portion of a billable instance-
hour.

Auto Scaling can be integrated with Elastic Load Balancing
to distribute incoming traffic across multiple EC2 instances.
The Elastic Load Balancing service provides the required
amount of load balancing capacity by routing traffic across
instances within the Auto Scaling Group. It supports Amazon
EC2 instances with any operating system and can perform load
balancing by using diverse TCP ports and protocols.

EC2 instances for our Synchronization Service do not need
to be exposed to the Internet since this component
communicates only with Amazon SQS and Amazon
DynamoDB. However, to extend security requirements,
Amazon EC2 web interfaces allow specifying which groups
may communicate with which other groups. This allows
controlling access to instances in a highly dynamic
environment.

D. Amazon DynamoDB - Metadata DB

Amazon DynamoDB is a fast and flexible NoSQL database
service for all applications that need consistent, single-digit
millisecond latency at any scale [14]. DynamoDB belongs to
the category of key-value stores and is used to manage the state
of several services of Amazon’s e-commerce platform, which
have high reliability requirements and need tight control over
availability and performance.

DynamoDB uses a synthesis of well-known techniques to
achieve scalability and reliability. Data is partitioned and
replicated using hashing. Every node in the system is assigned
to one or more points on a fixed circular space called “ring”.
Each data item, identified by a key, is assigned to a node by
hashing its key with a hash function, whose output is a point on
the ring, and then walking the ring clockwise to find the first
node that appears on it (coordinator node). The consistency
among replicas during updates is maintained by protocol
similar to those used in quorum systems. This protocol has two
parameters R/W - the minimal number of nodes that must
participate in a successful read/write operation respectively.
When a coordinator receives a write operation, it writes the
data locally and then sends a write request to the other N-1

7

replica nodes. If at least W-1 nodes respond, the operation is
considered successful and the coordinator informs the client.
When a read operation is received, the coordinator sends a read
request to the N-1 nodes, and if at least R-1 nodes respond, it
returns the result to the client [15].

DynamoDB can provide the desired levels of availability
and performance with a proper design and implementation, and
can also handle successfully server and data center failures.
DynamoDB is incrementally scalable and allows service
owners to scale up and down based on their current request
load [16].

In our reference architecture, DynamoDB is mainly
responsible for storing all the metadata regarding files,
versions, users and workspaces. The Synchronization Service
interacts directly with DynamoDB to keep a consistent view of
all this information. When a client connects to the system, the
first thing it does is asking the Synchronization Service for
changes that were made during the offline time period. When
the Synchronization Service receives a commit operation of a
file, it must first check that the metadata received is consistent.
If the metadata is correct, it proceeds to save it to the database.

DynamoDB is a fully managed database service. One
simply creates a database, sets throughput, and the service
handle all the rest. Database operations can be done through
AWS Management Console or the Amazon DynamoDB APIs.
Our Synchronization Service would interact with DynamoDB
by using the API methods called GetItem, PutItem and
DeleteItem. The GetItem operation returns a set of attributes
for an item that matches the primary key. The PutItem creates a
new item, or replaces an old item with a new item (including
all the attributes). The DeleteItem operator deletes a single item
in a table by primary key. Some examples of how these
methods could be used in our system are presented in
Appendix C.

V. PERFORMANCE AND COST ANALYSIS

In this section, we are going to evaluate performance and
cost of our proposed application. Performance is an integral
part of our application and significant considerations must be
put into technical design to achieve reasonable throughput. The
application will be accessible at global level and should sustain
large number of users.

Three scenarios are devised to analyze the performance and
cost metrics of our cloud storage application. Variations in
performance metrics and cost will be studied based on a set of
initial assumptions and estimates that are required for our
analysis. These assumptions and estimates are later defined in
this section.

The application is supposed to be deployed on Amazon
Web Services and we intend to theoretically calculate the cost
of hosting the application on the Cloud based on our
assumptions and estimates. Thereafter, operating cost will be
compared against a proposed business model to analyze the
cost-benefit of the application. In other words, we will
determine the required pricing of the application to be
profitable. The purpose of analyzing the cost and pricing is not
to establish a business viable model but to develop a sense of

cost of operating a cloud application with cloud computing and
a performance that is achievable in reasonable cost limits.

A. Initial Assumptions

• Resources and cost analysis would be performed on
one year baseline after application goes into
production.

• Application provide services globally and available to
all Internet users. This means that ideally application
should have zero downtime 24x7.

• Application design baseline is to keep the UI simple
and efficient. The data payload which will be
exchanged on HTTP requests and response as well as
size of HTTP requests and response, all inclusive will
be 2MB each handshake (request, acknowledge
request, response and payload). This can be split up by
500KB of payload and 100KB of request and response.

• The application business model will offer 2 broad
categories of subscription. ‘Free’ storage up to specific
storage capacity and ‘Paid’ storage for higher than
‘Free’ storage capacity.

B. Estimations

1) Estimate of subscribers after one year (signed-up
users): Estimated first year user subscriptions are calculated as
per initial ballpark number of subscriber and then growth in
subscription based on reasonable (random) percentage to
achieve a total hypothetical number of subscriptions at the end
of first year. This method is more realistic scenario of user
growth than just picking a random number as one year
subscribers. After thirty users in first month, there is
supposedly 15% monthly growth in number of users for three
months, 20% for next four months and then 25% growth till the
end of the year. Total user subscriptions, regardless of paid or
free are 230. Compounding formula (Users = U * (1+r) ^t) can
be used to calculate monthly growth where:

• U = monthly user subscription • r = increase % • t = months (1 for monthly)

Month User Growth (%)
1 30.0 0%

2 34.5 15%
3 39.7 15%

4 45.6 15%

5 54.8 20%

6 65.7 20%
7 78.8 20%

8 94.6 20%

9 118.3 25%

10 147.8 25%
11 184.8 25%

12 231.0 25%

Table 1

8

Total users at the end of year are 231. Hence, the resources
will be acquired based on 231 signed-up (subscribed) users in
first year. Performance parameters of acquired cloud resources
and cost of resources will be calculated based on above
estimate.

2) Estimate of upload & download (Data-in & Data-out)
file size: The average file size of 10MB will be used to test the
different scenarios. 10MB file uploaded/download will be used
as baseline for estimating required resources for application
performance testing. Cost will be calculated accordingly.

C. Cost of Acquired Resources

As per the architecture section, that computing resources
acquired for the application are Amazon EC2 (computing) on-
demand instance of m3.medium. Storage option for the
application is Amazon S3 (persistent data storage). It is to be
noted that Amazon EC2 instance also provide internal storage
that can be used for storing meta-data and it does not exceed
couple of gigabyte. Amazon EC2 instance’s internal storage
should be sufficient for it if utilized. This additional storage
(meta-data) will not add in additional cost other than the cost of
instance therefore is not considered in the scenarios and
analysis.

Table 2 shows Amazon instance m3.medium and its
bandwidth. These bandwidth measures are not advertised by
Amazon and it largely depends on the external network
infrastructure, distance of source server from the destination
and the tier and class of server. However, based on
independent tests, the conservative measure of average
bandwidth output of the m3.medium instance is given in table
2 which is based on the experiment conducted by researchers
as show in [17]. 391.00 mega-bits (Mb) is tested bandwidth
which equals to 48.88 mega-byte (MB) per second (391.00/8).
However, this certainly may not be the actual throughput
received at the user’s end which is degraded due to several
network and external reasons. As a rule of thumb, we assume
that 50% of actual tested bandwidth will be achievable, i.e.
24.45 MB/s. Table 2 also shows the monthly cost computed
based on 732 hours a month.

Amazon EC2 instance
(bandwidth advertised) Bandwidth Unit

Cost($)/hr Cost/Month

m3.medium 391.00 Mbps $0.1330 $97.36

Max Bandwidth in MBps 48.88 MB/s

Effective % of BW
(achievable)

50%

Effective BW (MBps)
24.4375
MB/s

Table 2

For the Amazon S3 storage, the throughput in mega-byte
(MB) per second is by tier and this is advertised by Amazon.
For storage utilization greater than 1TB, the throughput is
50MB/s transfer out from the storage and we will consider
50% of it to be actual achievable of whichever tier the
utilization will be. The actual tier wise throughput is shown in
Table 3.

Amazon S3 Storage
Throughput

(MB/s) Size (TB) Cost/month/
GB

1TB Tier 20.00 1.00 $0.0300

2-50 TB Tier 50.00 49.00 $0.0295

50-500 TB Tier 50.00 450.00 $0.0290

501-1000 TB Tier 50.00 500.00 $0.0285

Amazon S3 Data
Transfer Out Size (TB) Cost/month/

GB

1TB (free) 1.00 $0.0900

Upto 10 TB 10.00 $0.0900

Upto 50 TB 40.00 $0.0900

Upto 150 TB 100.00 $0.0700

Table 3

D. Use Cases

1) Use Case 1: At the end of firs year, between 5%-50%
of users from the total subscribers access the application in a
day (0-24 hour period). The 24 hours will be divided into units
of 2 hours. Therefore, there will be 12 units of measurement in
a day. This is essentially a test based on optimal ‘user traffic’
in a day. It can also be extended to calculate performance and
metrics for a month.

2) Use Case 2: Keeping the same condition as of Use Case
1, the file size of 10MB based on initial estimate will be
increase to 50MB to test the performance and cost metrics.
This is essentially stressing our initial ‘data size’ estimates and
its impact on performance and cost.

3) Use Case 3: Keeping the user traffic conditions as Use
Case 1 and file size of 10MB (also as per Use Case 1), user
traffic will be increased in this case. This is essentially
‘computing and network’ test and its impact on overall
performance and cost.

E. Performance Metrics of Resources

Little’s Law will be extensively utilized to calculate the
performance metrics. In brief, Little’s law deals with the
queueing theory and is an industry accepted method for
calculating software performance metrics. Detailed derivation
and explanation of Little’s law is outside the scope of this
paper. Little’s law has following key variables:

1) Number of occurrences or Entities in the system [N]:
Can be considered as number of simultaneous users accessing
the application from perspective of our analysis.

2) Total Response Time or Average time entity spend in a
system [R]: From perspective of our analysis, this is total of
service time of HTTP request and response and data
downloaded from storage. This also includes wait time.
Therefore total response time consists of Service time of
Request (A) + Service time of data download (B) + Wait time
(W)

Total Response time = (A + B) + W

9

3) Throughput or Arrival Rate [T]: Throughput is number
of user served. This will be calculated in the unit of per
second.

The above key performance will be constrained by
Utilization, Bandwidth (EC2 instance and S3 storage) and
User-traffic.

F. Unit Calculation Using Available Data Variables
Number of total users are 231 (Table 1) and the request

size is 500 KB + 100 KB + 100 KB = 700 KB per user. Data-
request size (File size) = 10 MB as per the estimation set in
the estimation section. Wait time can be assumed to be 0
seconds/ user to capture the impact of all users accessing the
application resources at one time. Total response time to be
calculated = (A + B) + W. Service time of request Size (A),
service time of Data-request (B), and Wait time (W) will be
added to the total of (A+B). The resources will be constrained
by few factors such as CPU utilization to peak at 80%.
Effective EC2 instance computing bandwidth is 24.45 MB/s
as per Table 2. S3 storage resources are dynamically acquired
according to the tier in effect as per Table 3.

First we will calculate the metrics for 1 user at first and
then extend the trend with increasing use traffic based on
percentage of total user over 24 hour period. The calculation
shows that single user connecting on EC2 m3.medium
instance (for http request) and downloading a 10MB file from
S3 storage will have a total response time (including the think
time of 2 sec) of 0.3868 seconds at 0.23% server utilization.
Table 4 shows the basic estimates for single user.

Parameters/Inputs 1 User
(Unit Measure)

Concurrent users (N) 1

Page size (KB) 500.00 KB

Http request (KB) 100 KB

Http response (KB) 100 KB

Total Request size(MB) 0.68 MB

Single file size to download (MB) 10 MB

Total file size in (MB) for all users (1 user) 10.00 MB

Table 4

G. Test for Use Cases (1,2 & 3)
1) Use Case 1:
Extending the unit calculation, if 5% to 60% of subscribers

will access the application simultaneously in a timeframe of 1-
2 hours a day, the throughput achieved will be between 0.8 –
1.6391 service requests per second. Refer to Table-A in
Appendix for the actual data points and working, it also shows
the bottle-neck and the need for additional instances (required
server resources) when single server is bottle-necked. The data
in the appendix table has been expanded to show the increased
scalability and need for additional computing resources. The
actual graphs are shown below. Average response time varies
between minimum of 2 seconds and the maximum of 8
seconds, however think time (Z) is the most impactful
component to the overall response time. Think time keeps the

overall performance analysis and calculations realistic and
reasonable. If think time is set to zero (0) this would mean that
all users send the request to the server at the same time
without any queue, pushing the performance metrics to non-
realistic outputs. Service time of computing component (i.e.
EC2 instance) does not have much impact as the request sizes
and meta-data size are not too big compared to data size, thus
have minimum impact on average response time. Data transfer
service time primarily impacts the average response time.

Figure 6. Total Response Time vs User Traffic

In Table-A in Appendix the server utilization is shown in
the last row where highlighted instances are utilized above
95% or close to 100%. This is a saturation point and server
bottleneck conditions. To overcome this, EC2 instance needs
to be configured to scale out and add an extra EC2 instance to
the application. Once the additional instance is up, throughput
will be reduced for that time frame and utilization will be
distributed over two EC2 instances. Table-B in the Appendix
shows throughput and utilization split across two EC2
instances. Highlighted instances shows the hours when the
second instances of EC2 is added to the application due to
high traffic volume and the utilization threshold is set to be
80%. As soon as instance utilization reaches 80%, the
additional instance is enabled and up. The graphs show the
impact of added instance and sudden drop and spike in
throughput and utilizations.

Figure 7. Use Traffic vs Throughput

10

Figure 8. Utilization Graph Based on User Traffic

Cost of resouces:
Based on assumption that this daily pattern continues and is

considered normal application usage, the monthly cost of
resources will be as follows

Final total cost of compute resources (Amazon EC2) for 1
month is $137.92. Refer to Table-C in Appendix.

From the Table-A in Appendix total data downloaded in a
day can be calculated for a month. This information is
summarized in Table 5 below.

 24 hours Month

Total data downloaded (MB) 8660.000

(GB) 8.457 257.939 GB

(TB) 0.008 0.252 TB

Table 5

Assuming that overall data storage is still under 1TB, the
cost of storage (only) charged separate by Amazon S3 will be
$7.74. Cost of data transfer out is per month per GB, therefore
it will be $23.31 for a month while data-in (upload) is free.
Refer to Table-D (i) and (ii) in Appendix. Cumulative total cost
of data storage and data transfer out is $30.95. The total cost of
compute, data storage and data transfer out will be $137.92 +
$30.95 equals to $168.87 per month.

Resource Monthly Cost Use Case 1

Compute cost $137.92

Storage & Data transfer cost $30.95

Grand Total $168.87

Table 6

We will perform tests on other two use cases by stressing
the variables as described above in the paper and show
graphical outputs and impact on cost.

2) Use Case 2:

Use case 2 is actually stressed by file size. The file size has
been increased five folds to 50 MB. There is no significant
impact on the average response time in terms of absolute time,
a mere 2-3 seconds additional time however relatively there is
an increase of approximately. 80% on minimum and around
30% increase in maximum average response time as shown in
Table 7 below.

Average response time Use case 1 Use case 2

Min 2.59 sec 4.87 sec

Max 8.59 sec 10.87 sec

Table 7

Figure 9. Total Response Time vs User Traffic

Throughput has a drastic impact due to increase in the data
file size but the average response time is sustained due to
additional instance deployed and both running at high
utilization.

Throughput Use Case 1 Use Case 2

Min 1.134 req/sec 0.254 req/sec

Max 1.556 req/sec 0.341 req/sec

Utilization Use Case 1 Use Case 2

Min 8.41% 11.04%

Max 123.67% 126.31%

Table 8

In Table 8 above, utilization more than 100% is the sum of
total utilization on both instances. To know the actual
utilization of each instance, greater than 100% utilization
should be divided by 2.

Cost of resources:

The most impact of increasing the file size is on cost rather
than performance. Again, the computing impact is minimal as
request size and meta-data size is not the primary impactor
hence the cost of computing or Amazon EC2 instance is
unchanged as in Use case 1 the instances were running on low
utilization and use case 2 only the utilization has increased on

11

the instances but they still scale for same number of hours.
However, the major impact is on data transfer-out cost which is
increased from $30.95 to $292.55 per month.

Resource Monthly Cost Use Case 2

Compute cost $137.92

Storage & Data transfer cost $154.63

Grand Total $292.55

Table 9
3) Use Case 3:

In this use case scenario we are going to assume that user
traffic increases over time and performance and cost metrics
analysis will be performed. From initial one year baseline total
of 231 subscribers, we will double it to 460 users/subscribers.
Increased number of user has direct impact on computing
resources as throughput and utilization increases pushing
utilization at each of two EC2 instance to beyond 100%. This
means that third instance would be required. Table-E in
Appendix is the utilization table which shows the three
instances enabled during the hours of day and how many hours
each instance is enabled.

Throughput Use Case 1 Use Case 2 User Case 3

Min 1.134 req/sec 0.254 req/sec 1.190 req/sec

Max 1.556 req/sec 0.341 req/sec 1.640 req/sec

Utilization Use Case 1 Use case 2 Use Case 3

Min 8% 11 % 19 %

Max 124 % 126 % 250%

Table 10
Cost of resources:

Based on this scalability the cost of Amazon EC2 instance
will increase to $340.75 shown in Table 11 below.

EC2 instance Enable Cost($)/hr Hours Up Cost($)/Day

m3.medium Y $0.1330 24.00 $ 3.19

m3.medium Y $0.1330 20.00 $ 2.66

m3.medium Y $0.5320 10.00 $ 5.32

 $ 340.75

Table 11

Data transfer out cost will proportionately be double that of
use case 1 as a result of subscribed user base doubled.

Resource Monthly Cost Use Case 3

Compute cost $340.75

Storage & Data transfer cost $61.66

Grand Total $402.40

Table 12

H. Evaluation of running cost and proposed revenue model

From the three use cases discussed above, below is the
summary of cost for each use case. It is apparent that cost
increase in use case 2 is attributed to increased data transfer out
while increased cost in use case 3 is attributed to bigger user

base. It is to note that five times increase of data transfer out
from 10MB in use case 1 (optimal scenario) to 50MB in use
case 2 hiked the cost up to 75% while twice the increase in user
base (231 to 460) increased the cost by 137%

Resource Monthly Cost
Use Case 1

Monthly Cost
Use Case 2

Monthly Cost
Use Case 3

Compute $137.92 $137.92 $340.75

Storage &
Data transfer

$30.95 $154.63 $61.66

Grand Total $168.87 $292.55 $402.40

Table 13

Figure 10. Monthly Cost in All Three Use cases

A simple proposed business model for storage capacity to
the end-user is shown below.

Price for storage capacity

• Each subscribed user (signed-up user) will be given
first 15GB free of cost.

• 15GB + additional storage will come at a cost

• 15GB – 100 GB storage capacity will have a flat cost
(to be determined).

• 100GB – 500GB storage capacity will have a flat cost
(to be determined).

• 500GB – 1TB storage capacity will have a flat cost (to
be determined).

• 1TB is maximum storage capacity limit per user.

Based on the above proposed price offering model, it would
require less than 10% subscriber to be service paying users.
E.g. 17 users will be required on a $10 per 15GB plan to break-
even the operating cost of application. 17 users are actually 8%
of total subscribed users.

Number of paid users
required % of total base

Paid users
Required to
break even

Use
Case 1

Use
Case 2

Use
Case 3

Use
Case 1

Use
Case 2

Use
Case 3

$10/15GB slot 17 29 40 8% 13% 9%

$15/15GB slot 11 20 27 5% 9% 6%

$20/15GB slot 8 15 20 4% 7% 4%

Table 14

12

VI. CONCLUSION

In this paper, we have presented reference architecture and
design goals of a Dropbox-like file storage system by
identifying its subsystems, components, communication
protocols, and persistence mechanism. Our architecture relies
on a loosely-coupled asynchronous communication framework
for providing elasticity and load balancing to distributed
objects using message queuing.

Regarding system deployment, we have identified the
physical cloud infrastructure and technologies that can be used
for the implementation of our solution. Amazon’s platform is
built for high availability, reliability and efficiency. Services
like Amazon S3 and EC2 seem to be the right choice for
deployment of our system in the Cloud. However, to take
advantage of Amazon SQS and DynamoDB services we need
further study.

We have evaluated the performance and cost benefits of
creating this service on the cloud. The analysis shows that the
application could be profitable if the assumptions and estimates
are sustainable in real conditions. This analysis shows that the
application could be reasonably profitable if the assumptions
and estimates are sustainable in actual (real world) conditions.
The pricing here is also competitive to other cloud storage
services being offered on the Internet. Even if other support
and over-heads costs are considered, the margin of profitability
can be sustained as only ~10% users are required to cover
infrastructure cost and few more percentage points can cover
other costs as well. Cost of storage only is cheapest portion of
the cost as long as user base uses storage nominally. To give an
idea about the storage cost, if all 231 users in optimal use case
utilize 15B of free storage that comes to about 3.5TB (231 x
15GB = 3465 GB / 1024 = 3.3 TB) will cost approximately
$130 on Amazon S3. This cost is not hard to cover if the
subscription base has reasonable paid users of the service.

REFERENCES
[1] I. Drago, M. Mellia, M. Munafo, A. Sperotto, R. Sadre, and A. Pras.

Inside dropbox: Understanding personal cloud storage services. In Proc.
of ACM IMC, pages 481–494, 2012.

[2] Librsync. (n.d.). Retrieved April 18, 2015, from
https://github.com/librsync/librsync

[3] Li, Z., Wilson, C., Jiang, Z., Liu, Y., Zhao, B. Y., Jin, C., ... & Dai, Y.
(2013). Efficient batched synchronization in dropbox-like cloud storage
services. In Middleware 2013 (pp. 307-327). Springer Berlin
Heidelberg.

[4] Lopez, P. G., Sanchez-Artigas, M., Toda, S., Cotes, C., & Lenton, J.
(2014, December). Stacksync: Bringing elasticity to dropbox-like file
synchronization. In Proceedings of the 15th International Middleware
Conference (pp. 49-60). ACM.

[5] Tridgell, A., & Mackerras, P. (1996). The rsync algorithm.

[6] All AWS Case Studies. (n.d.). Retrieved May 3, 2015, from
http://aws.amazon.com/solutions/case-studies/all/

[7] AWS | Amazon Simple Storage Service (S3) - Online Cloud Storage for
Data & Files. (n.d.). Retrieved May 3, 2015, from
http://aws.amazon.com/s3/

[8] Brantner, M., et al, “Building a Database on S3”, Proceedings of the
2008 ACM SIGMOD international conference on Management of data.

[9] Hobin Yoon, et al, “Interactive Use of Cloud Services: Amazon SQS
and S3”, IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, 2012.

[10] AWS | Amazon Simple Queue Service - Hosted Message Queuing
Service. (n.d.). Retrieved May 3, 2015, from http://aws.amazon.com/sqs/

[11] Popovic, K., et al, “REST-style Actionscript programming interface for
message distribution using Amazon Simple Queue Service”, MIPRO,
2012 Proceedings of the 35th International Convention.

[12] Sadooghi, I., et al, “Achieving Efficient Distributed Scheduling with
Message Queues in the Cloud for Many-Task Computing and High-
Performance Computing”, IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, 2014.

[13] AWS | Amazon Elastic Compute Cloud (EC2) - Scalable Cloud Hosting.
(n.d.). Retrieved May 3, 2015, from http://aws.amazon.com/ec2/

[14] AWS | Amazon DynamoDB - NoSQL Cloud Database Service. (n.d.).
Retrieved May 3, 2015, from http://aws.amazon.com/dynamodb/

[15] Weintraub, G., “Dynamo and BigTable - Review and Comparison”,
2014 IEEE 28-th Convention of Electrical and Electronics Engineers in
Israel.

[16] DeCandia, G., et al, “Dynamo: Amazon’s Highly Available Key-value
Store”, Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, 2007.

[17] Benchmarking: Network Performance of m1 and m3 instances using
iperf tool. (n.d.). Retrieved May 2, 2015, from
http://blog.flux7.com/blogs/benchmarks/benchmarking-network-
performance-of-m1-and-m3-instances-using-iperf-tool

[18] AWS | Amazon EC2 | Pricing. (n.d.). Retrieved May 3, 2015, from
http://aws.amazon.com/ec2/pricing/

APPENDICES
A. Amazon S3 - Use of Programming Libraries
B. Amazon SQS - Use of Programming Libraries
C. DynamoDB - Use of Programming Libraries
D. User traffic pattern over a 24 hours period
E. Throughput & Utilization while extra instances are added to

accommodate high traffic
F. Cost of computing Amazon EC2 instance
G. Cost of Amazon S3 data storage
H. Cost of Amazon S3 data transfer out
I. Utilization of the three instances enabled during the hours of day

https://github.com/librsync/librsync
http://aws.amazon.com/solutions/case-studies/all/
http://aws.amazon.com/s3/
http://aws.amazon.com/sqs/
http://aws.amazon.com/ec2/
http://aws.amazon.com/dynamodb/
http://blog.flux7.com/blogs/benchmarks/benchmarking-network-performance-of-m1-and-m3-instances-using-iperf-tool
http://blog.flux7.com/blogs/benchmarks/benchmarking-network-performance-of-m1-and-m3-instances-using-iperf-tool
http://aws.amazon.com/ec2/pricing/

13

APPENDICES

A. Amazon S3 - Use of Programming Libraries

The package com.amazonaws.services.s3.transfer included in the AWS SDK for Java provides the
TransferManager class which is high level utility for managing transfers to Amazon S3. When possible,
TransferManager attempts to use multiple threads to upload multiple parts of a single upload at once. When dealing
with large content sizes and high bandwidth, this can have a significant increase on throughput.

Uploading data
 1: AWSCredentials myCredentials = new BasicAWSCredentials(...);
 2: TransferManager tx = new TransferManager(myCredentials);
 3: Upload myUpload = tx.upload(myBucket, myFile.getName(), myFile);
 4:
 5: // We can poll our transfer's status to check its progress
 6: if (myUpload.isDone() == false) {
 7: System.out.println("Transfer: " + myUpload.getDescription());
 8: System.out.println(" - State: " + myUpload.getState());
 9: System.out.println(" - Progress: " + myUpload.getProgress().getBytesTransferred());
10: }
11:
12: // Transfers also allow us to set a <code>ProgressListener</code> to receive
13: // asynchronous notifications about your transfer's progress.
14: myUpload.addProgressListener(myProgressListener);
15:
16: // Or we can block the current thread and wait for our transfer
17: // to complete. If the transfer fails, this method will throw an
18: // AmazonClientException or AmazonServiceException detailing the reason.
19: myUpload.waitForCompletion();
20:
21: // After the upload is complete, we call shutdownNow to release the resources.
22: tx.shutdownNow();

B. Amazon SQS - Use of Programming Libraries

The following examples illustrate how our system could realize several operations in Java with a queue.

Creating a queue
1: System.out.println("Creating a new SQS queue called Sync_Queue.\n");
2: CreateQueueRequest createQueueRequest = new reateQueueRequest().withQueueName("Sync_Queue");
3: String myQueueUrl = sqs.createQueue(createQueueRequest).getQueueUrl();

Sending a message
1: System.out.println("Sending a message to Sync_Queue.\n");
3: sqs.sendMessage(new SendMessageRequest().withQueueUrl(myQueueUrl).withMessageBody("This is my
 message text."));

Receiving a Message
 1: System.out.println("Receiving messages from Sync_Queue.\n");
 2: ReceiveMessageRequest receiveMessageRequest = new ReceiveMessageRequest(myQueueUrl);
 3: List<Message> messages = sqs.receiveMessage(receiveMessageRequest).getMessages();
 4: for (Message message : messages) {
 5: System.out.println(" Message");
 6: System.out.println(" MessageId: " + message.getMessageId());
 7: System.out.println(" ReceiptHandle: " + message.getReceiptHandle());
 8: System.out.println(" MD5OfBody: " + message.getMD5OfBody());
 9: System.out.println(" Body: " + message.getBody());
10: for (Entry<String, String> entry : message.getAttributes().entrySet()) {
11: System.out.println(" Attribute");

14

12: System.out.println(" Name: " + entry.getKey());
13: System.out.println(" Value: " + entry.getValue());
14: }
15: }
16: System.out.println();

C. DynamoDB - Use of Programming Libraries

The following Java code snippet exemplifies how our solution could perform database operations over
DynamoDB.

Getting an item
1: DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(new ProfileCredentialsProvider()));
2: Table table = dynamoDB.getTable("Metadata");
3: Item item = table.getItem("Chunk_Id", 101);

Putting an item
 1: DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(new ProfileCredentialsProvider()));
 2: Table table = dynamoDB.getTable("Metadata");
 3: // Build the item
 4: Item item = new Item()
 5: .withPrimaryKey("Chunk_Id", 206)
 6: .withString("Chunk_Order", "21")
 7: .withString("Is_Folder", "0")
 8: .withString("File_Name", "Project_A")
 9: .withString("File_Extension", "doc")
10: // Write the item to the table
11: PutItemOutcome outcome = table.putItem(item);

Deleting an item
1: DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(new ProfileCredentialsProvider()));
3: Table table = dynamoDB.getTable("Metadata");
4: DeleteItemOutcome outcome = table.deleteItem("Chunk_Id", 101);

15

D. Based on user traffic pattern over a 24 hours period, the data is shown in the below table.

Table -A

E. Throughput & Utilization while extra instances are added to accommodate high traffic

Hours of day 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 19-20 21-22 23-24

Total Throughput [Rt/sec] 1.487 1.520 1.512 1.628 1.612 1.663 1.579 1.462 1.528 1.556 1.246 1.197

Throughput X1 (Req/sec) 1.487 1.520 0.756 0.814 0.806 0.832 0.789 1.462 1.528 1.556 1.246 1.197

Throughput X2 (Req/sec) 0.000 0.000 0.378 0.407 0.403 0.416 0.395 0.000 0.000 0.000 0.000 0.000

Utilization U= X * D [%] 40.05 61.40 81.42 99.12 108.55 123.67 96.11 69.31 51.89 31.89 16.77 8.41

Utilization U1 (%) 40.0% 61.4% 40.7% 49.5% 54.2% 61.8% 48.0% 69.3% 51.8% 31.8% 16.7% 8.4%

Utilization U2 (%) 0.000 0.000 40.7% 49.5% 54.2% 61.8% 48.0% 0.000 0.000 0.000 0.000 0.000

Table -B

F. Cost of computing Amazon EC2 instance

EC2 instance BW Enable Cost($)/hr Hours Up Cost($)/Day

m3.medium 391.00 Y $0.1330 24.00 $ 3.19

m3.medium 391.00 Y $0.1330 10.00 $ 1.33

Max Bandwidth in (declared) 97.75 MB/s

Effective % of BW (achievable) 50%

Effective BW (MBps) 48.875 MB/s

Total Monthly Cost $ 137.92

Table -C

Parameters/Inputs 20% 30% 40% 45% 50% 55% 45% 35% 25% 15% 10% 5%

Number of concurrent users (N) 46 69 92 104 115 127 104 81 58 35 23 12

Page size (KB) 500 KB

Http request (KB) 10 KB

Http response (KB) 10 KB

Total Request/Response size(MB) 31.45 47.17 62.89 71.09 78.61 86.82 71.09 55.37 39.65 23.93 15.72 8.2

Single file size to download (MB) 10 MB

Total file data (MB) for all number
of users

460
MB

690
MB

920
MB

1040
MB

1150
MB

1270
MB

1040
MB

810
MB

580
MB

350
MB

230
MB

120
MB

Hours of day 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 19-20 21-22 23-24

Service Time (A) (sec) 0.643 0.965 1.287 1.455 1.608 1.776 1.455 1.133 0.811 0.490 0.322 0.168

Service Time (B) (sec) 26.286 39.429 52.571 59.429 65.714 72.571 59.429 46.286 33.143 20.000 13.143 6.857

Wait Time (W) (sec) 0 0 0 0 0 0 0 0 0 0 0 0.000

Total Service Time (D) = (A+B) + W 26.929 40.394 53.858 60.883 67.323 74.348 60.883 47.419 33.954 20.490 13.465 7.025

Average think time (Z) seconds 4.00 5.00 7.00 3.00 4.00 2.00 5.00 8.00 4.00 2.00 5.00 3.000
Total Response Time [R] = D + Z
(sec) 210.929 385.394 697.858 372.883 527.323 328.348 580.883 695.419 265.954 90.490 128.465 43.025
Average Response Time [R avg] =
[Rt]/N 4.585 5.585 7.585 3.585 4.585 2.585 5.585 8.585 4.585 2.585 5.585 3.585
Total Throughput (X)
[Requests(N) / sec] 1.487 1.520 1.512 1.628 1.612 1.663 1.579 1.462 1.528 1.556 1.246 1.197

Utilization U= X * D [%] 40.05 61.40 81.42 99.12 108.55 123.67 96.11 69.31 51.89 31.89 16.77 8.41

16

G. Cost of Amazon S3 data storage

Amazon S3 Storage
Throughput
(MBps)

Enable Size (TB) Cost($)/month/GB Data Distribution (TB) Cost($)/Month

1TB Tier 20 1 1 0.03 0.252 $ 7.74

2-50 TB Tier 50 0 49 0.0295 0.000 $ -

50-500 TB Tier 50 0 450 0.029 0.000 $ -

501-1000 TB Tier 50 0 500 0.0285 $ -

Throughput latency 50%

Actual Average Throughput 17.5

Total Monthly Cost $ 7.74

Table –D (i)

H. Cost of Amazon S3 data transfer out

Amazon S3 Data Transfer out Enable Size (TB) Cost($)/month/GB Data Distribution (TB) Cost($)/Month

1TB 1 1 0.09 0.251893997 $ 23.21

Up to 10 TB 0 10 0.09 0 $ -

Up to 50 TB 0 40 0.09 0 $ -

Up to 150 TB 0 100 0.07 $ -

Total Monthly Cost $ 23.21

 Cumulative cost of data storage and data out $ 30.95

Table –D (ii)

I. Utilization table shows the three instances enabled during the hours of day and how many hours each instance is up.

Hours of day 1-2 3-4 5-6 7-8 9-10
11-
12

13-
14

15-
16

17-
18

19-
20

21-
22

23-
24 Hours/Day

Total utilization 86 130 173 202 223 250 199 148 109 66 39 19

Instance 1 x x x x x x x x X 66 39 19 24

Instance 2 x x x x x x x x X 18

Instance 3 x x x x x 10

Table –E

	I. Introduction
	II. Related Work
	III. Logcal Architecture
	A. Desktop Client
	B. Metadata Database
	C. Synchronization Service
	D. Message Queuing Service
	E. Cloud Storage
	F. File Processing

	IV. Cloud Deployment
	A. Amazon S3 - Cloud Storage
	B. Amazon SQS - Message Queuing Service
	C. Amazon EC2 - Synchronization Service
	D. Amazon DynamoDB - Metadata DB

	V. Performance and Cost Analysis
	A. Initial Assumptions
	B. Estimations
	1) Estimate of subscribers after one year (signed-up users): Estimated first year user subscriptions are calculated as per initial ballpark number of subscriber and then growth in subscription based on reasonable (random) percentage to achieve a total...
	2) Estimate of upload & download (Data-in & Data-out) file size: The average file size of 10MB will be used to test the different scenarios. 10MB file uploaded/download will be used as baseline for estimating required resources for application perform...

	C. Cost of Acquired Resources
	D. Use Cases
	1) Use Case 1: At the end of firs year, between 5%-50% of users from the total subscribers access the application in a day (0-24 hour period). The 24 hours will be divided into units of 2 hours. Therefore, there will be 12 units of measurement in a da...
	2) Use Case 2: Keeping the same condition as of Use Case 1, the file size of 10MB based on initial estimate will be increase to 50MB to test the performance and cost metrics. This is essentially stressing our initial ‘data size’ estimates and its impa...
	3) Use Case 3: Keeping the user traffic conditions as Use Case 1 and file size of 10MB (also as per Use Case 1), user traffic will be increased in this case. This is essentially ‘computing and network’ test and its impact on overall performance and cost.

	E. Performance Metrics of Resources
	1) Number of occurrences or Entities in the system [N]: Can be considered as number of simultaneous users accessing the application from perspective of our analysis.
	2) Total Response Time or Average time entity spend in a system [R]: From perspective of our analysis, this is total of service time of HTTP request and response and data downloaded from storage. This also includes wait time. Therefore total response ...
	3) Throughput or Arrival Rate [T]: Throughput is number of user served. This will be calculated in the unit of per second.

	F. Unit Calculation Using Available Data Variables
	G. Test for Use Cases (1,2 & 3)
	1) Use Case 1:
	Cost of resouces:
	2) Use Case 2:
	Cost of resources:
	3) Use Case 3:
	Cost of resources:

	H. Evaluation of running cost and proposed revenue model

	VI. Conclusion
	References
	Appendices

	Appendices
	A. Amazon S3 - Use of Programming Libraries
	B. Amazon SQS - Use of Programming Libraries
	C. DynamoDB - Use of Programming Libraries
	D. Based on user traffic pattern over a 24 hours period, the data is shown in the below table.
	E. Throughput & Utilization while extra instances are added to accommodate high traffic
	F. Cost of computing Amazon EC2 instance
	G. Cost of Amazon S3 data storage
	H. Cost of Amazon S3 data transfer out
	I. Utilization table shows the three instances enabled during the hours of day and how many hours each instance is up.

