Designing a Dropbokke File Storage Service

A Performance and Cost study

Hassaan Bukhari Fariborz Khanzadeh Alejandro Ramirez
School of Information Technology School of Information Technology School of Information Technology
York University York University York University
Torontg Canada Toronto, Canda Toronto, Canada
hassaanb@yorku.ca fariborz@yorku.ca aramirez@yorku.ca
Abstract— In this paper wepresent areference architecture of Thereafter, we will analyzethe performance ofthe

a Dropboxlike file storage system by identifyingts core application based on the specifications of computing and data
componens and communication protocols. Walso present a storage services made available Amazon on their website.
deployment architecture that explains howur Dropboxlike file \We will develop estimates and will simulate scenarios to show
storagesystem carbe deployed in the Cloud. We chose Amazon asperformance variations. Based on those scenariosille

a Cloud Provider to carry out a feasible implementatiaNehave cajcylatemonthly cost ofCloud services using the advertised

also evaluatel key performance metrics by presenting hypothetical ‘yricing informationon Amazon websitf18]. At last, weassess
scenarios Optimal assumptions and estimates of user traffic and theprofitability of the applicatiorat a highlevel
data storage utilization are made in the paper. In addition, cost

parametersof cloud resource are evaluated withthe actual dollar- The remainder of this paper is organized as follows:
values based on thepricing information available onAmazonWeb Section Il provides a summary tife related work. Section lI
Services. presents our reference architectuBection V presents the

_ o proposed deployment architecture to build our system on top of
Keywords —Dropbox, Cloud File Storage, Synchronization, amazon Web ServicesSection V presents the analysis of
I\S/Iesésage Queuing, 'fA‘maZO” ng Services, Amazon S3, Amazoferformance and costetricsof the applicatiorwith estimates
QS, DynamoDBPerformance, Cost and scenariossinally, the conclusion is provided in section VI.

. INTRODUCTION I

Cloud file storage services have become veryulaop Little

recently as they simplify the storage and exchange of Ol o mentation of commercial personal cloud storage systems.
digital resources among us and our multiple devicessRiie pyaqq et a1 1] have studied the architectueé Dropbox by
from using single personal computers to using multiple dev'ceéonducting performance measurements based on network

with td::ferent glattfcl))rlrrls andd czﬁe_ratingtsg/lstems sucrf1 ¥ affic traces. According to them, Dropbox file synchronization
smartpnonesand tablets, an €ir portable access WoMg i using thirdpartty libraries such as librsync Jj2

different geographical locations at any timeb&slieved to be 1, ever not much is known about the details of the file

accountable for the massive popularity of cloud Storage, chrorzation mechanism and metadata organization. The

services. These services usually provide a complete set of 100 s trye about other personal cloud storage providers such
for file storage, sharingnd automatic synchronization as their as Google Drive, OneDrive, etc. Nevertheless, most of these

three key featuse At the same time they take advantage of thpgroviders decouple the control flow from the data flow by

benefits that cloud solutions provide inherently Such agying the files on separate storage servers, and processing the
availability, redundancy, and scalability. data on separate application servers. For example, Dropbox

However, not much is known about the internals ofemploys Amazon S3 for their data storage, and uses its own
commercial solutions such as Dropbox, Google Drive,private cloud for file synchronization and etadata
OneDrive, etc. as they are proprietary and closed. Thegganagement. Li et al. [3] has represented thyh Hevel
solutions rely on architecture and algorithms that are ndrchitecture of the Dropbox as seen in Figure 1.

visible to the outside world. Therefore, in order to study and Dropbox uses a client application to monitor file changes in

proposea reference architagte for such services, we V@ gpqifieq folders. After a change notification is received, the
researched the architecture of the open source alternatives sygi . application indexes the affected files. Then, the file is

as ownCloud, SparkleShare, Syncany, and StackSync. compresed and sent to Amazon S3, and the file metadata is

In terms of system deploymentye design aphysical sent to the Dropbox private cloud. The maximum size of an
environment based on oweference architecturand someof object in Dropbox is 4MB. Files larger than that are split into
the Amazon’sfirst servicesthat areoffered at a large scale, chunks of 4MB each. Dropbox reduces the amount of data
namely Amazon S3, Amazon SQS, Amazon EC2 and Amaza@xchange by transmitting the updated chunks of a file dinly.
DynamoDB.We explain howeach of these services functions also keeps a local copy of metadata information in each device.
and isutilized by oursolution Dropbox uses a cluster of notification servers for pushing

notifications about the updates to the clients. Lopez et al. [4],

RELATED WORK
is known about the design, architecture, and

on the other hand, propose ngia messaging middleware for
change notifications asedoupling message delivery from
message processing is a key requirement for scalability. Usi

2

interacts with theSynchronization &vice to handle file
metadata updates (e.g. file name, size, modificatate, étc.).
rigalso interacts with the backe@loud Sorage for storing the

a messaging middleware simplifies the overall architecturactual files.

since it also provides load balancing.

Meta-
Data

Livenass

Content Beacons

Figure 1. Dropbox High Level Architecture

Ill. LOGCALARCHITECTURE

Our reference architecture for a DropHike cloud storage
system consists of five main componenBesktop Client
Application, Synchronization e3vice, Message Queuing
Servce, Metadata Btabaseand the Cloud 8rage baclend.
The proposedarchitecture ofour system with the main
components and their interaction is presentedrigure 2
below. TheClient Application and the SynchronizatiGervice
interact through the Messag Queuing 8rvice. The
Synchronization &rvice also interacts with the Metadata
Database for data persistence. Client Application directly
interacts with theCloud Sorage baclend to upload and
download files. Our reference architecture is based on alyoos

coupled service oriented design that enables us to implement |

and deploy it on different types of clouds including public,
private, and hybrid clouds.

Metadata DB

A
A 4
[Synchronization Service m

Joud Storage

A
A 4
[Message Queding Service]

L

(inenico || oo]
)

[Thunker][Wakcher

Desktop Client
Figure 2. Logical Architecture

A. Desktop Client
The Desktop Client pplication monitors the folders that

are identified as workspace or sync folders and synchroniz§§

them with the remoteCloud Storage. The Desktopli€ht

Some of the mosimportant requirements of the Desktop
Client include upload and download of the files, detecting file
changes in the sync folder, and handling gotsfldue to offline
or concurrent updates. The main components of the desktop
client are Watcher, Chunker, Indexer, and Internal DB as
described below.

e Watcher monitors the sync folders and notifies the

Indexer of any action performed by the user for
exampe when user create, delete, or update files or
folders.

Chunker splits the files into smaller pieces called
chunks. To reconstruct a file, chunks will be joined
back together in the correct order. A chunking
algorithm can detect the parts of the filestthave
been modified by user and lgriransfer those parts to
the Cloud $rage, saving on cloud storage space,
bandwidth usage, and synchronization time.

Indexer processes the events received from the
Watcher and updates the internal database with
information about the chunks of the modified files.
Once the chunks are successfully submitted to the
Cloud Storage, the Indexer will communicate with the
SynchronizationService using the Message Queuing
Service to update the Metadata Database with the
changes.

Internal Database keeps track of the chunks, files, their
versions, and their location in the file system.

B. Metadata Database

The Metadata Database is responsible for maintaining the
versioning and metadata informatiahoutfiles/chunks, users,
and workspees. The Metadata Databasan be a relational
database such as MySQL, or a NoSQL database service such
as Amazon DynamoDB. Regardless of the type of the
database, the Synchronization Service should be able to
provide a consistent view othe files using a database,
especially if more than one userork with the same file
simultaneouslySince NoSQL data stores do not support ACID
properties in favour of scalability and performance, we need to
incorporatethe support for ACID propertiggrogrammatically
in thelogic of our Synchronization Service in case opt for
this kind of databases. However, using a relational database
can simplify the implementation of the Synchronization
Service asACID propertiesare natively supported by them.
Selecting the type ofthe Metadata Database is a design
decision that should be made early in the design phase of the
system development life cycle.

The data that need to be stored in the Metadata Database
include data about the chunks, objects, users, and their devices
and wakspaces (sync folders). The following keslue
hema describes the persistence data structure of our cloud
storage system in more details.

3

{ partitions a file that is located on the server into several chunks
“chunk_id™: “string”, with fixed block sizes, and uses a hash function to calculate its
“chunk_order”: “number”, hashvalue to be sent to clients. The clients then use the hash
“object™: values to determine whether to update the local copy of a

{ chunk or not. Rsync is widely adopted by for data
“version™ “number, synchronization due to its simplicity and high performance.
“is_folder”: “boolean”,
“modified”: “number”, To be able to provide an efficient and scalable
“file_name”: “string”, synchronization protocol we consider using a communication
“file_extention”: “string”, middleware between clients and the Synchronization Service.
“file_size”: “number”, The messaging middleware should provide scalable message
“file_path”: “string”, queuing and change notification to support a high number of
“user”: clients using pull or push strategies. This way, multiple
{ o Synchronization Service instances can receive requests from a
“user_name". “string", global request queue, and the communication middleware will
“email’: *string”, , be able balance their load.
quota_limit”: “number”,
ugg\?it(?g}f sed": number, D. Message Queuing Service
{ An important part of ourreference architecture is a
“device_name™: “string” messaging middleware that should be able to handle a
“sync_fdder”: “string” substantial amountfaeads and writes. A scalable Message
} Queuing Service that supports asynchronous mes$wesgpel
} communication between clients and the Synchronization
} Senice instances best fits the requirements of our application.
} The Message Queuing Service supports asynchronous and

loosely coupled messafgased communication between
istributed components of the system. The Message Queuing
ervice should be of high performance, highly scalable, and be
able to persistently store any number of messages in a highly
Gvailable and reliable gueue. The Message Queuing Service
also provides load balancing and elasticity for multiple
instances of the Synchronization Service.

C. Synchronization Service

The Synchronization Service is the component th
processes file updates made by a client apglies these
changes to other subscribed clients. It also synchmniz
clients’ local databases with the inforioat stored in the
Metadata Databas&he Synchronization Services the most
important part of the system architecture due to its critidal ro
in managing the metadatand synchronizing users’ files. Figre 3 illustrates two types of queues that are usesuin
Desktop clients communicatgth the SynchronizatioBevice Message Queuing Service. The Request Queue is a global
to either obtain updates from tidoud Storageor send files queue that is shared among all clients. rE$ie requests to
and updates to theloud Storagand potentially other user§ update the Metadata afbabase through the Synchronization
a client was offline for a period of time, it polls the system fo Service will be sent to th&®equest Queue. The Response
new updates as soon as it goes online. When thQueues that correspond to individual subscribed clients are
Synchranization @rvice receives an update request, it checksesponsible for delivering the update messages to each client.
with the MetadataDatabase for consisteneydthen proceeds Since a message will be deleted from the queue once received
with the update Subsequently, a notification is sent to allby a client, we need to create separatep®ese Queues for
subscribed users or devices to report the file update. each client to be able to share an update message which should

As a design goal,he SynchronizationService should be be sent to multiple subscribed clients.

designed in a wato transmit less data between clients and the
Cloud Storage in order to achieve better response. fiilme
meet this design goal, th8ynchronizationService should
employ a differencing algorithm to redudeetvolume of the
data that needs to be synchronized. Instead of transmitting

entire files fromclientsto serveror vice versa, most of the file
synchronization algorithms just transmit the difference||| Synchronization
between two versns of a file. Therefore, only theat of the Service

file that has been changed is transmitted. Bse decreases

An essential part of the Synchronization Service is a
syrchronization algorithm. Rsyncd% one of the most popular
and high performance algorithms of this type that is able to

bandwidth consumption and cloud data storémethe end
compute the difference among different copies of data. Rsync

,,,,,,,,,,,,,,,,,,,,,,,,

Request Queue

Response Queue 1

Response Queue 2

user

,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3. Message Queuing Service

E. Cloud Sorage F. FileProcessing
Cloud Storage stores the chunkstloé files uploaded by The sequence diagram in Figure 4 shows the interaction

the users. Clients directly interact with the Cloud Storage tbetween the components of the application in a scenario when

send and receive objects using the API provided by the cloudlient 1 updates a file that is shareith Client 2 and 3so

provider. The separation of the metadata from the objecthey shaild receive the update too. If the other clients were not

storage enables our reference architecture to ugeCloud online at the time of the update, the Message Queuing Service

Storageas the baclend data store. keeps the update notifications in separate response queues for
them until they become online at a later time.

Client1 | | Client2 | | Client3 Message Synchronization
| | | QueulngI Service Senlnce

Metadata DB Cloud Storage
I

upload(chunks)

commit(changes)

——commit(changes)—>|
r—updateDB(changes)
K — — — —0K— — — —

= ———- OK-— — —— r

I<updateClient(changes)—

download(chunks)

<———— 4-—-——-—————— q1-——-———-- chunks -+ +—-————————— T-—————————-

A\

—updateClient(changes)—

|

|

|

|

I<-updateClient(changes)— |
|

download(chunks) :

11
|

K————————— 1—-—————————- chunks————-—-—-—-—-—-—--——————————

T T T T
| | | | |

Figure 4. Sequence Diagram

(SQS), Amazon Elastic Compute Cloud (EC2), and Amazon
IV. CLouD DEPLOYMENT DynamoDB.

For the purpose of this study, we chose Amazon as cloud

service provider because it is currently one of the major playefgjiiy computing serviceshat areoffered at a large scale. The
in the cloud computing market, with a proven maturity When‘Success Stories” on Amazon's website describe some

corrspared dto f?the(rjs,tga:hem e sgrvicef reqtfired byt OUr experiences using these services: NASA's Jet Propulsion
System and ofiers data storage services at very low COsts. Laboratory (JPL) uses Amazon EC2 to process high resolution

Amazon runs a worlidvide ecommerce platform that satellite images that provide guidance and situational
serves tens of millions customers at peak times using tens @pareness to its robots. In addition, JPL relies on Amazon
thousands of servers located in many data centersichtbe ~ Cluster Compute Cloud Instances and Amazon SQS to deploy
world. There are strict operational requirements on Amazon’8assive computations with less effort. 6 Waves Limited, a

platform in terms of performance, reliability and efficiency, leading international publisher and developer of gaming
and scalability. applications on the Facebook platform, uses Amazon EC2 and
Amazon S3 to host its social games with an audience of more

Amazon offers compute, storage, databases and networkiggay 50 million players per month. ElephantDrive turns to
servicesn the Cloud, which are collectively knovas Amazon Amazon S3 to store client data, expanding their total amount of

Web Srvices (AWS). All services can be configured a”dstorage by nearly 20 percent each week while avoiding
monitored from a single weltased console, and are offered;,creased capital expendés

with a simple “payasyou-go” charging model.The most]])
relevant services for our reference architecture are Amazon Figure 5 depicts te overview of our deployment
Simple Storage $eice (S3), Amazon Simple Queue Service architecture which is in direct relationship with the logical

Amazon's S3, SQS and EC2 services are among the first

5

architecture presented in the previous section. Each componeasks by wrapping the underlying REST API. Our application
is explained in further detail below. would use the API calledom.amazonaws.services.s3.transfer
which provides a utility for managing transfers to Amazon S3.
This method is a high level Java class calleghsferManager

that uploads data in parts using multiglennections and
threads, and achieves the highest throughput in comparison
with other popular S3 clientand programming libraries J9

An example of how this method could be used ingystem is
shown in Appendi@.

Metadata DB
Amazon DynamoDB

Cloud Storage { SV”C'X;”;?EO; CSZEW'CE B. Amazon SQS- Message Queuing Service
Amazon S3 Amazon SQS is a highly reliable and scalable message
$ delivery service that enables asynchronous medsagrd
. _ communication between the distributed components of larger
Message Queuing Service] scale applications. Amazon SQS runs within Amazon’s-high
Amazon SQS I . .
availability data centers, sagues will be available whenever
Amazon Web Services areneeded. To prevent messages from being lost or becoming
_______ -t s=sr-=-=- unavailable, all messages are stored redundantly across
Desktop Client multiple servers and data centers [10].
Application Amazon SQS can deliver unlimited number of messages at

any time. Tle size of the message cannot be more than 256
KB. And it ensures at least 1 delivery of the message. It retains
message up to 14 days. It also provides batching of messages
A. Amazon 3 - Cloud Sorage up to 10 messages or 256 KB in total whichever is higher is
r%oplicable. When a message is received, it becomes locked
ghile being processed. This keeps other application from

Figure 5. Deployment Architecture

Amazon S3 is a cloud storage service that offers softwal
developers capabilities for storing large volumes of data, wit

additional features such as life cycle management and securi focessing fails, the lock will expire and the message will be

ﬁf,?ﬁﬁ?;d ﬂg{gqsdtjiﬁ\{;,cegg fgfgﬂz g'\fg},';ebi,ﬁgf’ri%%o;aggfgy’ a_vailable again. In the case where_ the apmpinaneeds more
$ o ' %[ne for processing the lock timeout can be changed

access performance. Amazon S3 is designed to make we . ' S .
scale computing easier for developers. Amazon S3 provides é(nammally via the change message visibility operation [10].

simple web services interface that can be used to store and In order to achieve scalability, our Desktop Application
retrieve any amount of data, at any time, from anywhere on theteracts with the Synchronization Service through Amazon
web. It gives any developer access to the same highly scalab®QS. Everyitme a change in the local folder is detected by the
reliable, fast,and inexpensive data storage infrastructure thaiOS, our Desktop Application upload the affected chunks to
Amazon uses to run its own global network of web sites [7]. Amazon S3 and communicates to the Synchronization Service
order to commit these changes to the metadata stored in
ynamoDB. Furthermore,un Desktop Application receives
notifications of committed changes from the Synchronization
%(I;‘rvice to apply them to the local folder.

rocessing the message simultaneously. If the message

Conceptually, Amazon S3 is an infinite store for objects og
variable size (minimum 1 Byte, maximum 5 GB). An object is
simply a byte container which is identified by a URI. Clients
can read and update S3 objects remotely using a SOAP
REST-based interface; e.gget(uri) returns an object and As any other distributed system, Amazon SQS is used as
put(uri, bytestream) writes a new version of the objed][messagg@assing mechanism between our components. This
Each object is associated to a bucket. That is, when a usest only helps n making the different components loosely
creates a new object, the user specifies into which bucket tbeupled, but also helps in building a more failure resilient
new object should be placed. system overall. If one component is receiving and processing
requests faster than the other component (an unbalanced

Our Desktop Application directly interacts with Amazon gro ducer consumer situation), buffey will help make the
I

S3 in order to store user files. Its integration with the operatin

system permits to monitor a local folder and synchronizes ,
with a remote bucket. When there is a change in thgmazon SQS also acts as a transient buffer between

synchonized folder, the application receives a notification to omponents. If a message is sent directly to a component, the

process the event. Once the application identifies which file cgﬁﬁﬁ'vrﬁ;!’s'g n:edu;ouggnsstéwgel: 2;3 rraetSe?Jgtra;(ari ?e?:réierlé d and
files have been modified or created, it will proceed to store it i 9e q ! P

Amazon S3. In order to avoid any bottleneck, save traffic arﬂtla]queue service smoothens out any “spiky” message traffic
staage costs, the application transfers only those parts of fil '

(chunks) that have been modified or are new. Thanks to our messageiented communication, keeping

Amazon S3 provides different SDKs for easy integratior;[he local folder in sync with the metadata storage is

with third party technologies. These kits simplify programmingmeXpens'Ve’ sLtany committed change is advertised as soon as

verall system more resilient to bursts of traffic (or load).

6

possible by means of asynchronous natifications. Amazon SQ@®hieve data in sync. Desktop clients communicate with the
in our architecture provides elasticity to distributed objdtts. Synchronization Service to obtain the changes occurred when
decouples sync control from the storage service, createstley were offlie, commit new versions of files, and receive
transparent load balaimg mechanisms, and it simplifies ene events about remote modifications. Multiple instances might be
to-many communication. running simultaneously in order to cope with this workload.

However, a major limitation of Amazon SQS is that it does We take advantage of Amazon EC2 to meet the scalability
not guarantee delivering the messages exactly once. requirements of our Synchronikat Service Amazon EC2
guarantees delivery of the message at least once. That meansvides an Auto Scaling feature that permits define conditions
there might be duplate messages delivered to our system. Th& scale up and down an arbitrary group of instances. Scaling
existence of duplicate messages comes from the fact that thesmditions can be defined to increase or decrease EC2 capacity
messages are copied to multiple servers in order to providey a certain percentage. In case of scalipy when Auto
high availability and increase the ability of parallel access [12]Scaling detects that a condition has been met, it automatically
According to Amazon, ost of the time each message will be adds the requisite amount of Amazon EC2 instances to the
delivered exactly once. But in spite of that, it seems better tAuto Scaling Group. In case of scaling down, Auto Scaling
consider this aspect at the moment of building our componentdecides which EC2 instance within the group is terminated
In order to be able to verify duplications, our Desktoponce the scaling condition is met. When more than one
Application might use its internaldatabase and our instance meets this criterion, Auto Scaling will terminate the
Synchronization Service might use DynamoDB. In both casefstance running for the longest portion of a billable instance
these databases might be used to verify whether it is the firlsour.
time that a message is processed or not. This technique might

minimize any overhead caused by duplicate tasks égecut Auto Scaling can be integrated with Elastic Load Balancing

to distributeincoming traffic across multiple EC2 instances.
Our Desktop Application and Synchronization ServiceThe Elastic Load Balancing service provides the required

would interact with Amazon SQS principally through the APIs:amount of load balancing capacity by routing traffic across

CreateQueue, DeleteQueue, SendMessage, ReceiveMessampances within the Auto Scaling Group. It supports Amazon

and DeleteMessage. CreateQueue creates queues for use WGP instances with any operating system and can perform load

AWS account. DeleteQueue deletes a queue. SendMessdggdancing by using diverse TCP ports and protocols.

adds messages to a specific queue. ReceiveMessage return

one or more messages from a queue. DeleteMessage removes zECZ instances for our Synchronization Servicedoneed

previously received message from a queue. Examples of ca be exposed to the Internet since this component
to these métods can be found in Appendx communicates only with Amazon SQS and Amazon

DynamoDB. However,to extend security requirements,
For the system security, we rely on the security of Amazommazon EC2 web interfaces allogpecifying which groups
SQS. Authentication mechanisms are provided to ensure thatay communicate with which other groups. This allows
messages stored in Amazon SQS queues are secured agaiositroling access to instances in a highly dynamic
unauthorized access. Only authorized users can access to ¢émgironment.

contents of queues. Inder to keep the latency low, we would

not add any encryption to messages. D. Amazon DynamoDB - Metadata DB
o) Amazon DynamoDB is fast and flexible NoSQL database
C. Amazon EC2 - Synchronization Service service for all applications that need consistent, sidigji

Amazon EC2 is a web service that providesizedde millisecond latency at any scale [14lynamoDB belongs to
compute capacity in the Cloud. It is designed to make- welihe category of keyalue stores and is used to manage the state
scale cloud computing easier forvepers Amazon EC2 of several services of Amazon'scemmerce platform, which
offers a highly reliable environment where instances can bleave high reliability requirements and need tight control over
rapidly commissioned. The service runs within Amazon’'savailability and performance.
proven network infrastructure and data centers. The EC2

Service Level Agreement commitment is 99.95% availability DynamoDB uses a synthesis of wiellown techniques 0
for each region [13]. achieve scalability and reliability. Data is partitioned and

replicated using hasig. Every node in the system is assigned
Amazon EC2 provides a wide selection of instance typet one or more points on a fixed circular space called “ring”.
optimized to fit different use cases. Instance types comprideéach data item, identified by a key, is assigned to a node by
varying combinations of CPU, memory, storage, and nethashing its key with a hash function, whose output is a point on
working capacity. In our architecture, the Synchronizatiorthe ring, and then walkgnthe ring clockwise to find the first
Service runs on an instance type called “m3.medium” with hode that appears on it (coordinator node). The consistency
CPU Intel Xeon E®670 v2 (Ivy Bridge) and 3.75 GB RAM. among replicas during updates is maintained by protocol
The software preonfigured is the Amazon machine image similar to those used in quorum systems. This protocol has two
called “JBoss powered by Bithami” which comes with ready parameters R/W the minimal number ohodes that must
to-run versions of Apache, MySQL anBaks. participate in a successful read/write operation respectively.
When a coordinator receives a write operation, it writes the

_Our Synchromz_ayo_n Service Is a key_component N OUhata locally and then sends a write request to the otiier N
middleware since it is in charge of managing the metadata 10

replica nodes. If at least \WW nodes respond, the op#on is

7

cost of operating a cloud application with cloud compuéing

considered successful and the coordinator informs the clierd. performancéehat isachievable in reasonable cost limits.

When a read operation is received, the coordinator sends a read
request to the N nodes, and if at least Rnodes respond, it A,

returns the result to the client [15]. .

DynamoDB can provide the desired levels of availability
and performance with a proper design and implementation, and
can also handle successfully server and data center failures.
DynamoDB is incrementally scalable and allows service
owners to scale up and down based orr theirent request
load [16].

In our reference architecture, DynamoDB is mainly
responsible for storing all the metadata regarding files,
versions, users and workspaces. The Synchronization Service
interacts directly with DynamoDB to keep a consistent \oéw
all this information. When a client connects to the system, the
first thing it does is asking the Synchronization Service for
changes that were made during the offline time period. When
the Synchronization Service receives a commit operation of a
file, it must first check that the metadata received is consistent.

If the metadata is correct, it proceeds to save it to the database.

DynamoDB is a fully managed database service. One
simply creates a database, sets throughput, and the service

Initial Assumptions

Resouces and coshnalysis would be performed on
one year baseline after application goes into
production.

Application provide serviceglobally and available to
all Internet uers. This means that ideally application
should have zero downtime 24x7.

Application design baseline is to keep the Ul simple
and efficient. The data payload which will be
exchanged oTTP requests andesponse as well as
size of HTTPrequests and response, all inclusive will
be 2MB each handshake (request, acknowledge
request, response and payload). This can beugphity
500KB of payload and 16 of request and response.

The applicatn business model will offer 2 broad
categories of subscription. ‘Free’ storage up to specific
storage capacity and ‘Paid’ storage for higher than
‘Free’ storage capacity.

handle all the rest. Database operations can be done through Estimations
AWS Management Console or the Amazon DynamoDB APIs. 1) Estimate of subscribers after one year (signed-up

Our Synchronization Service would interact with DynamoDBuserS): Estimated firsyear user subscriptions aalculated as

by using the APImethods called Getltem, Putltem and
Deleteltem. The Getltem operation returns a $eitibutes

for an item that matches the primary key. The Putltem creates
new item, or replaces an old item with a new item (including"l

per initial balpark number of subscriber and then growth in
sgbscription based on reasonable (random) percentage to
chieve a total hypothetical number of subscriptions at the end

all the attributes). The Deleteltem operator deletes a single iteff first year. This method is one realistic scenario of user

in a table by primary key. Some examples of howsghe growth than just picking a random number as one year
methods could be used in our system are preseimed Subscribers. After thirty users in first month, there is
AppendixC. supposedly 15% monthly growth in number of users for three
months, 20% for next four months and then 25% growttinél
V. PERFORMANCE ANDCOSTANALYSIS end of the year. Total user subscriptions, regardless of paid or
In this section, we are going to evaluate performance arL&ee are 230. Compounding formula (Users = U * (1+1) ™) can

cost ofoour proposed application. Performanceais integral e used to calculate monthly growth where:
part ofour application and significantonsideratioa must be

put into technical design to achieve reasonable throughipet e U =monthly user subscription
application will be accessible at global level and &heustain e r=increase %
large number of ussr e t=months (1 for monthly)
Three scenarios are devised to analyze the perfornaawce Month Usea Growth (%)
cost metricsof our cloud storageapplication Variatiors in 1 30.0 0%
performance metricand coswill be studied based amset of 2 34.5 15%
initial assumptions and estimates that are requiredofor 3 39.7 15%
analysis. These assumptions and estimates are later defined in 4 45.6 15%
this section. 5 54.8 20%
The applicatio is supposed to be deployed on Amazon 6 657 ZOZA’
Web Services and we intend to theoretically calculate the cost ! 8.8 20%
of hosting the application on the Cloudased onour 8 94.6 20%
assumptions and estimates. Thereafter, operating cost will be 9 1183 25%
compared against a proposed business model to analyze the 10 147.8 25%
costbenefit of the application. nl other words, we will 11 184.8 25%
determine the required pricing of the application to be 12 23T1:t>le1 25%

profitable. The purposef analyzing the cost and pricing is not
to establish a business viable model but to develop a eénse

Total users at the end of year a&l. Hence, the resources Throughput : Costimonth/
will be acquired based on 231 signadl (subscribed) users in Amazon S3 Storage (MB/s) SES(E) GB
first year. Performance parameters of acquired cloud resourcegrg Tier 20.00 1.00 $0.0300
and_ cost of resources will be calculated based on aboVvg ;1 tier 50.00 49.00 $0.0295
estimate. 50500 TB Tier 50.00 450.00 $0.0290

2) Estimate of upload & download (Data-in & Data-out) 5011000 TB Tier 50.00 500.00 $0.0285
file size: The average file size of 10MB will hesed to test the Amazon S3 Data Size (TB) Costmonth/
different scenariaslOMB file uploaded/download will be used Transfer Out GB
as baseline for estimating required resources for applicationtT8 (free) 1.00 $0.0900
performance testing. Cost will be calculated accordingly. Upto 10 TB 10.00 $0.0900

_ Upto 50 TB 40.00 $0.0900
C. Cost of Acquired Resources Upto 150 TB 100.00 $0.0700

As per the architecture section, that computing resources Table 3
acquired for the application are Amazon EC2 (computing) on
demand instance of m3.medium. Storage option for thE. UseCases
application is Amazon S3 (persistent data storage). It is to be1) Use Case 1: At the end of firs year, between 596%
noted that Amaan EC2 instance also provide internal storageyf ysers from the total subscribers access the application in a

that (I:an fbe.usgd forAstoring nlwzeézéla art'1d it (?Oe_stnot (laxcteed day (624 hour period). The 24 hours will be divided into units
couple of gigabyte. Amazon Instance's internal storage 5 g rg. Therefore, there will be 12 units of measurement in

should be sufficient for it if utilized. This additional storage dav. Th | tially a test based timal * traffic’
(metadata) will not addn additional cost other than the cost of & day. IS essentially a test based on optimal user traffic

instance therefore is not considered in the scenarios affy@ day: It can also be extended to calculate performance and
analysis. metrics for a month.

Table 2 shows mazon instance m3.medium and it
iﬂgg\ggthé nLh?tS el atr)ggl(; ngég enr?ggsgrqesth"’gf notl ?\i\{s\;grsf d lIy the file size of 10MB based on initial estimate will be
infrastructure, distance of source server from the destinatidicréaseé to SOMB to test the perfprrpance 'an’d cost metrics.
and the tier and class of server. However, based ohhis is essentially stressing our initial ‘data size’ estimates and
independent tests, the conservative measure of averafeimpact on performance and cost.
bandwidth output of the m3.medium instance is given in table
2 which isbased on the experiment conducted by researchers3) Use Case 3: Keeping the user traffic conditions as Use
as show in[17]. 391.00 megdits (Mb) is tested bandwidth Casel and file size of 10MB (also as pese Case 1), user
which equals to 48.88 megyte (MB) per second (391.00/8). traffic will be increased in this case. This is essentially

However, this certainly may not be the actual throughpuicomputing and network’ test and its impact on overall
received at the user's end whiis degraded due to several performance and cost.

network and external reasons. As a mflehumh we assume
that 50% of actual tested bandwidth will be achievabée
24.45 MB/s.Table 2 also shows the monthly cost computed

2) UseCase 2Keeping thesame condition as of Use Case

E. Performance Metrics of Resources

based on 732 hours a month. Little’s Law will be extensively utilized to calculate the
A ECainst Unit performance metrics. In brief, Little’s law dealwith the
mazon Instance . ni H H H

(G seEreR) Bandwidth | ost($)/hr Cost/Month queueing theory and is an mdustry_ accepte_d meth_od _for

_ calculating software performance metrics. Detailed derivation
m3.medium 391.00 Mbps $0.1330 $97.36 and explanation of Little’s law is outside the scope of this
Max Bandwidth in MBps | 48.88 MB/s paper. Little’s law has following key variables:
Effective % of BW 50% 1) Number of occurrences or Entities in the system [N]:
(achievable) Can be considered as number of simultaneous users accessing
Effective BW (MBps) 343‘/15375 the application from perspective of our analysis.

Table 2

2) Total Response Time or Average time entity spend in a
For the Amazo S3 storage, the throughput in mépe System [R]: From perspective of our analysis, this total of
(MB) per second is by tier and this is advertised by Amazorservice time of HTTP request antksponse and data
For gorage utilization greater than 1TBhe throughput is downloaded from storage. This also includes wait time.
50MB/s transferout from the storag@and wewill consider Thereforetotal response time consists 8ervice time of

50% of it to be actual achievablef avhichever tier the Request (A) + Service time of data down|0ad -(-BNa|t time
utilization will be. The actual tier wis throughput is shown in (W)

Table3.
Total Response time = (A + B) + W

9

3) Throughput or Arrival Rate [T]: Throughput is number overall performance analysis and calculations realistic and
of user served. This will be calculated in the unit of pereasonable. If think time is set to zero (0) this woukhn that
second. all users send the request to the semerthe same time

without anyqueue,pushing the performance metrics to non

The above key performance will be constrained byealistic outputs. Service time obmputing componenfi.e.
Utilization, Bandwidth (EC2 instamc and S3 storage) and EC2 instancejloes nothave muchimpactas the request sizes

Usettraffic. and metadata sizearenottoo bigcompared to data sizéhus
have minimum impact on average response.tbaga transfer
F. Unit Calculation Using Available Data Variables service time primarily impacts the average response time.

Number of otal usersare 231 (Table 1)and the equest
sizeis 500 KB + 100 KB + 100 KB = 700 KB per us@&ata
request size (File size) = 10 M& per the estimation st
the estimation sectionWait time can be assumed to be 0
seconds/ user to capture the impact of all users accessing
application resources at one timieotal response time to be
calculated = (A + B) + W. Service time of requesteS(a),
service timeof Datarequest (B) andWait time (W) will be
added to the total of (A+B)he resources will be constrained
by few factors such a€PU utilization to peak at 80%.
Effective EC2 instance computing bandwidth is 24.45 MB/s
as per Table 2. S3 storage resources are dynamically acquit 4 : 7
according to the tier in effect as per Table 3. —~Response Time i

Total Respanse Time Vs User Traffic (24 hours simulation)
2000 10

in seconds

]
=

Time

{
=

Total Response

First we will calculate the metrics for 1 user at first and
then extend the trend with increasing use traffic based on
percentage of total user over 24 hour period. The calcnlatio
shows that single user connecting on EC2 m3.mediurﬂ1e
instance (for http request) and downloading a 10MB file fron'%

n

Figure 6. Total Response Time vs User Traffic

In TableA in Appendix he server utilization is shown in
last rowwhere highlighted instances awtilized above

o o S))
S3 storage will have a total response time (including the thi 5% or close to 100%. This is a satimatpoint and server

time of 2 sec) of 0.3868 seconds at 0.23% server ut"ization_ottleneck.conditions. To overcome this, EC2 instance needs
Table4 shows he basic estimates for single user t6 be configured to scale out and add an extra EC2 instance to

the application. Once the additional instance is up, throughput

Parameters/inputs 1 User will be reduced for that time frame and utilization will be
(Unit Measure) distributed over two EC2 instances. TaBldn the Appendix
Concurrent users (N) 1 shows throughput and utilization gplacross two EC2
Page size (KB) 500.00 KB instances. Highlighted instances shows the hours when the
Http request (KB) 100 KB second instances of EC2 is added to the application due to
Http response (KB) 100 KB high traffic volume and the utilization threshold is set to be
Total Request size(MB) 0.68 MB 80%. As soon as instance utilization reaches 80%, the
Single file size to download (MB) 10 MB additonal instance is enabled and up. The graphs show the
Total file size in (MB) for all users (1 user) 10.00 MB impact of added instance and sudden drop and spike in
Table 4 throughput and utilizations.
G. Test for Use Cases (1,2 & 3) User traffic Vs Throughput
1) Use Case 1: 140 18
Extending the unit calculation, if 5% to 60% of subscribers 120 15 ¢

e C

g
B

er s

will access the application simultaneously in a timeframe of 1
2 haursa day, the throughput achieved will be between-0.8

H
¥
P

scalability and need for additional computing resources. The
actual graphs are shown below. Average response time varies
betweenminimum of 2 secnds and the maximunof 8
second, however hink time (Z) is the most impactful
component to the overall response time. Think time keeps the

1.6391 service requests per second. Refer to Jmbie f ’ : é
Appendix for the actual data points and working, it also shows =0 2:%
the bottleneck and the need for additional instances (required S0 3‘4{%
server resourcgsvhen single server is bottieecked. The data 20 028
in the appendix table has been expanded to show the increased 0) 0 E-

—— | ors —] ®2

Figure 7. Use Traffic vs Throughput

140 Utilization graph based on user traffic

120
100

80
60 /\
40

1 2 3 4 5 6

7

8 9 0 1 12

10

Use case 2 is actually stressed by file size. The file size has
been increased five folds to 50 MB. There is no significant
impact on the average response time in terms of absolute time,
a mere 23 secondsdditional time however relatively theig
an increase of approximatel0% onminimum andaround
30% increase in maximu@wverage response tinas shown in

Table7 below.

Utilization

User Traffic =

Figure 8. Utilization Graph Based on User Traffic

Cost of resouces:

Based on assumption that this daily pattern continues and is
considered normal application usage, the monthly cost of
resources will be as follows

Final total cost of compute resources (Amazon EC2) for 1
month is $13P2 Refer to TableC in Appendix.

From theTableA in Appendixtotal data downloaded in a
day can be calculatedor a month This informaton is
summarized in Tablb below.

Average response time | Use case 1 | Use case 2

Min 2.59 sec 4.87 sec

Max 8.59 sec 10.87 sec
Table 7

Total Response Time Vs User Traffic

(24 hours simulation)

20.00 - 140
B - 120
w
15.00%
=z - 100
o
S - 80
10.00 9
£ - 60
£
5.00F 40
3
c - 20
o
o
0.00é -
= 46 69 92 104 115127 104 81 58 35 23 12
&
s ‘
= —RespoHsSee iHéaﬁ‘c—Traﬁic

24 hours | Month Figure 9. Total Response Time vs User Traffic
Total data downloaded (MB) 8660.000 o . .
5 57 Throughput has a drastic impact due to increase in the data
(GB) 8.45 IS file size but the average response time is sustained due to
(TB) 0.008 0.252 TB additional instance deployed and both running at high
Tables utilization.
Assuming that overall data storage is still under 1T8, th Throughput Use Case 1 Use Case 2
cost of storage (only) chargsgparate by Amazon S3 will be . . .
$7.74 Cost of data transfer out is per month per GB, therefore Min 1.134 reg/sec 0.254 reg/sec
it will be $23.31for a month while datan (upload) is free. Max 1.556 reg/sec 0.341 reg/sec
Refer to TableD (i) and (ii) in AppendixCumulative total cost Utilization Use Gase 1 Use Gase 2
of datatSIOéa?e a:nd data tréslr(ljsfter ;)ut isf $30.$:5. '-II;hbe tgfégzsé of Min 8.41% 11.04%
compute, data storage and data transfer out will be 92 +
$30.95 equals to1$8.87per month. Max 12_?;'6;;%8 126.31%
anle

Resource

Monthly Cost Use Casel

Compute cost

$137.92

Storage & Data transfer cost| $30.95

Grand Total

$168.87

We will perform tests on other two use cases by stressin
the variables as described above in the paper and shd

Table 6

graphical outputs and impact on cost.

2) UseCase2:

In Table 8 above utilization more than 100% ihe sumof
total utilization on both instances. To know the actual
utilization of each instance, greater than 100% utilization
should be divided by 2.

Cost of resources:

The most impact of increasing the file size is on cost rather
n performance. Againheé computing impact is minimal as
request size and metkata size is not the primary impactor
hence the cost of computing or Amazon EC2 irtars
unchanged as in Use cabkéhe instances were running ow
utilization and use casgonly the utilizatiorhas increased on

11

the instances but they still scale for same number of hourba®. It is to note that five times increase of datasfiemout
However, the major impact is on data transfer cost whichs from 10MB in use casé (optimd scenario) to 50MB in use
increasedrom $30.95to $292.55per month. case2 hiked the cost up to 75% while twice the increase in user
base (231 to 460) increased the cost by 137%

Resource Monthly Cost UseCase 2
Monthly Cost Monthly Cost Monthly Cost
Compute cost $137.92 RESEUEE Use Casel Use Gase2 Use Gase3
Storage & Da transfer cost | $154.63 Compute $137.92 $137.92 $340.75
Storage &
Grand Total $292.55 Data transfer | $30-95 $154.63 $61.66
3 UseCase3 Table 9 Grand Total | $168.87 $292.55 $402.40
seCase 3:
Table 13
In this use case scenario we are going to assume that user
traffic increases over time and p_erfprmance and cost metrics Monthly Cost in 3 use cases
analysis will be performed. From initiane year baseline total
of 231 subscribers, weavill double it to 460 users/subscribers. $500.00
Increased number of user has direct impact on computing $400.00 R
resources as throughput and utilization increases pushing $300.00
utilization at each of two EC2 instance to beyond 100%. This '
means that third instge would be requiredTableE in $200.00
Appendix is the utilization table which shows the three $100.00 I
instances enabled during the hours of day and how many hours $0.00
1 2 3

each instance isnabled
M Cost increase $168.87 $292.55 $402.40

Throughput Use Gase 1 Use Gase 2 User Case 3 i :

Min 1.134 reg/sec 0.254 reqg/seq 1.190 reg/sec Figure 10. Monthly Cost in All Three Use caes

Max 1.556 reg/sec | 0.341 reg/sec | 1.640 reg/sec A simple proposed business model for storage capacity to
Utilization UseCase 1 Use @ase 2 Use Gase 3 the enduser is shown below

Min 8% 11 % 19 %

Max 124 % 126 % 250% Price for storage capacity

Table 10 e Each subscribed user (sigrep user) will be given

Cost of resources: first 15GB free of cost.

Based on this scalability the cost of Amazon EC#aimse e 15GB+ additionalstorage will come at a cost

will increase to $3@.75shown in Table 11 below. e 15GB —100 GB sbrage capacity will have a flat cost
(to be determined).
EC2 instance | Enable | Cost($)/hr | Hours Up | Cost($)/Day e 100GB —500GB storage capacity wil have a flat cost
m3.medium | Y $0.1330 24.00 $ 3.19 (to be determined).
3.medi Y 0.1330 20.00 2.66 Lo
m=me fum e i e 500GB —-1TB storage capacity will have a flat c@st
$ 340.75 _ . o
Table 11 e 1TBis maximum storage capacity limit per user.

Based o the above proposed price offering model, it would
require less than 10% subscriber to be service paying users.
E.g. 17 users will be required on a $10 per 15GB plan to break

Data transfer out cost will prog@nately be double that of
use case a&s a result of subscribed user base doubled.

Resource Monthly Cost Use Case3 even the operating cost of application. 17 users are actually 8%
Compute cost $340.75 of total subsdbed users.
Storage & Data transfer cost| $61.66 Number of paid users
) % of total base
Grand Total $402.40 _ required
Table 12 ;gdulijrzzrfo Use Use Use Use Use Use
. . bl’e?:lk - Case 1| Case 2| Case 3| Case 1| Case 2| Case 3
H. Evaluation of running cost and proposed revenue model
e the th di 4 ab bel s t $10/15GB slot | 17 29 40 8% 13% | 9%
rom the three use cases discussed above, below is the o c~-0 7 20 7 5% 9% %
summary of cost for each use caleis apparentthat cost /1568 siot | 8 T 20 yry = yry
increase in use case 2 is attributed to increased data transfer otf Sl > 2 >

while increased cost in use caeés attributed to bigger user Table 14

VI. CONCLUSION

In this paper we have presentedferencearchitecture and
design goals of a Dropbdike file storage system by

identifying its subsystems, components, communication
protocols, and persistence mechanism. Our architecture religg)
on a looselcoupled asynchronous communication framework
for providing elasticity and load balancing to distributed

objects using message queuing.

Regarding system deploymeniye have identified the
physical cloud infrastructure and technologies thatbeansed
for the implementationof our solution Amazon’s platform is

12

[10] AWS | Amazon Simple Queue ServieeHosted Message Queuing

Service. (n.d.). Retrieved May 3, 2015, frbitp://aws.amazon.com/sqs/

Popovic, K., et al, “RESBtyle Actionscript programming terface for
message distribution using Amazon Simple Queue Service”, MIPRO,
2012 Proceedings of the 35th International Convention.

Sadooghi, 1., et al, “Achieving Efficient Distributed Scheduling with
Message Queues in the Cloud for Margask Computing andHigh-
Performance Computing”, |IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, 2014.

[13] AWS | Amazon Elastic Compute Cloud (ECHcalable Cloud Hosting.

(n.d.). Retrieved May 3, 2015, fronttp://aws.amazon.com/ec2/

[14] AWS | Amazon DynamoDB NoSQL Cloud Database Service. (n.d.).

Retrieved May 3, 2015, froffttp://aws.amazon.com/dynamodb/

built for high availability, reliability and efficiency. Services [15] Weintraub, G., “Dynamo and BigTable Review and Comparison”,

like Amazon S3 and EC2 seem be the right choice for
deployment ofour system in the Cloud. Howeveag take
advantageof Amazon SQS and Dynarb® serviceswe need
further study.

We have evaluated the performance and cost benefits Bf}
creating this service on the clauthe analysis shows that the
application could be profitable if the assumptions and estimates

2014 IEEE 28h Convention of Electrical and Electronics Engineers in
Israel.

DeCandia, G., et al, “Dynamo: Amazon’s Highly Available Keyue
Store”, Proceedings of twenfirst ACM SIGOPS symposium on
Operating systems principles, 2007.

Benchmarking: Network Performance of m1l and m3 instances using
iperf tool. (n.d.). Retrieved May 2, 2015, from
http://blog.flux7.com/blogs/benchmarks/benchmarkietwork
performance-ofnl-andm3-instancesisingiperf-tool

aresustaimble in real conditionsThis analysis shows that the [18] AwS | Amazon EC2 | Pricing. (n.d.). Retrieved May 3, 2015, from

application could be reasonably profitable if the assumptions

and estimates are sustainable in actual (real world) conditions.

The pricing here is also competitive to other cloud storage

services beingffered on the Internet. Even if other support a,
and ovetheads costs are considered, the margin of profitabilitys.
can be sustained as only ~10% users are required to cover
infrastructure cost and few more percentage points can covet:
other costs as well. Cost storage only is cheapest portion of —
the cost as long as user base uses storage nominally. To give gn
idea about the storage cost, if all 231 users in optimal use case
utilize 15B of free storage that comes to about 3.5TB (231 4.

15GB = 3465 GB / 1024 3.3 TB) will cost approximately

$130 on Amazon S3. This cost is not hard to cover if the

subscription base has reasonable paid users of the service

REFERENCES

[1] I Drago, M. Mellia, M. Munafo, A. Sperotto, R. Sadre, and A. Pras.
Inside dropbox: Understanding personal cloud storage services. In Proc.

of ACM IMC, pages 481-494, 2012.

[2] Librsync. (n.d.). Retrieved April 18, 2015, from
https://github.com/librsync/librsync

[3] Li, Z., Wilson, C., Jiang, Z., Liu, Y., Zhao, B. Y., Jin, C., ... & Dai, Y.
(2013). Efficient batched synchronization in droplige cloud storage
services. In Middleware 2013 (pp. 3627). Springer Berlin
Heidelberg.

[4] Lopez, P. G., Sanchéxtigas, M., Toda, S., Cotes, C., & Lenton, J.
(2014, December). Stacksync: Bringing elasticity to drophike file

synchronization. In Proceedings of the 15th International Middleware

Conference (pp. 480). ACM.
[5] Tridgell, A., & Mackerras, P. (1996). The rsync algorithm.

[6] All AWS Case Studies. (n.d.). Retrieved May 3, 2015, from

http://aws.amazon.com/solutions/castedies/all/

[71 AWS | Amazon Simple Storage Service (S8nline Cloud Storage for
Data & Files. (n.d.). Retrieved May 3, 2015, from
http://aws.amazon.com/s3/

[8] Brantner, M., et al, “Building a Database on S3”, Proceedings of the
2008 ACM SIGMOD international conference on Management of data.

[9] Hobin Yoon, et al, “Interactive Use of Cloud ServicAsnazon SQS

and S3”, IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing, 2012.

http://aws.amazon.com/ec2/pricing/

APPENDICES

Amazon S3 - Use of Programming Libraries

Amazon SQS Use of Programming Libraries

DynamoDB- Use of Programming Libraries

User traffic pattern over a 24 hours period

Throughput & Utilization while extra instances are adaed t
accommodate high traffic

Cost of computing Amazon EC2 instance

Cost of Amazon S3 data storage

Cost of Amazon S3 data transfer out

Utilization of the three instances enabled during the hours of day

https://github.com/librsync/librsync
http://aws.amazon.com/solutions/case-studies/all/
http://aws.amazon.com/s3/
http://aws.amazon.com/sqs/
http://aws.amazon.com/ec2/
http://aws.amazon.com/dynamodb/
http://blog.flux7.com/blogs/benchmarks/benchmarking-network-performance-of-m1-and-m3-instances-using-iperf-tool
http://blog.flux7.com/blogs/benchmarks/benchmarking-network-performance-of-m1-and-m3-instances-using-iperf-tool
http://aws.amazon.com/ec2/pricing/

13

APPENDICES

A. Amazon S3 - Use of Programming Libraries

The package comamazonaws.services.s3.transfer included in the AWS SDK for Java provides the
TransferManager class which is high level utility for managing transfers to Aoma S3. When possible,
TransferManager attempts to use multiple threads to upload ipigltparts of a single upload at once. When dealing
with large content sizes and high bandwidth, this can have a sighificaease on throughput.

Uploading data

1: AWSCredentials myCredentials = new BasicAWSCredentials(...);

2: TransferManager tx = new TransferManager(myCredentials);

3: Upload myUpload = tx.upload(myBucket, myFile.getName(), myFile);
4:
5: // We can poll our transfer's status to check its progress

6: if (myUpload.isDone() == false) {

7: System.out.printin("Transfer: " + myUpload.getDescription());

8: System.out.printin(" - State: " + myUpload.getState());

9: System.out.printin(" - Progress: " + myUpload.getProgress().getBytesTransferred());
10:}

11:

12: /] Transfers also allow us to set a <code>ProgressListener</code> to receive

13: /I asynchronous notifications about your transfer's progress.

14: myUpload.addProgressListener(myProgressListener);

15:

16: // Or we can block the current thread and wait for our transfer

17: /I to complete. If the transfer fails, this method will throw an

18: /I AmazonClientException or AmazonServiceException detailing the reason.

19: myUpload.waitForCompletion();

20:

21: /] After the upload is complete, we call shutdownNow to release the resources.

22: tx.shutdownNow();

B. Amazon SQS- Use of Programming Libraries
The following examples illustrate how our system could rea&veral operations in Java with a queue.

Creating a queue

1: System.out.printin("Creating a new SQS queue called Sync_Queue.\n");
2: CreateQueueRequest createQueueRequest = new reateQueueRequest().withQueueName("Sync_Queue");
3: String myQueueUrl = sgs.createQueue(createQueueRequest).getQueueUrl();

Sending a message

1: System.out.printin("Sending a message to Sync_Queue.\n");
3: sgs.sendMessage(new SendMessageRequest().withQueueUrl(myQueueUrl).withMessageBody("This is my
message text."));

Receiving a Message

1: System.out.printin("Receiving messages from Sync_Queue.\n");

2: ReceiveMessageRequest receiveMessageRequest = new ReceiveMessageRequest(myQueueUrl);
3: List<Message> messages = sqs.receiveMessage(receiveMessageRequest).getMessages();
4: for (Message message : messages) {

5: System.out.printin(" Message");

6: System.out.printin(* Messageld: " + message.getMessageld());

7: System.out.printin(" ReceiptHandle: " + message.getReceiptHandle());

8: System.out.printin(* MD50fBody: " + message.getMD50fBody());

9: System.out.printin(" Body: " + message.getBody());

10: for (Entry<String, String> entry : message.getAttributes().entrySet()) {

11: System.out.printin(" Attribute");

14

12: System.out.printin(" Name: " + entry.getKey());
13: System.out.printin(" Value: " + entry.getValue());
14:

15:}

16: System.out.printin();

C. DynamoDB - Use of Programming Libraries

The following Java code snippet exemplifies how our solution could perfdatabase operations over
DynamoDB.

Getting an item

1: DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(new ProfileCredentialsProvider()));
2: Table table = dynamoDB.getTable("Metadata");

3: Item item = table.getltem("Chunk_Id", 101);

Putting an item

1: DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(new ProfileCredentialsProvider()));
2: Table table = dynamoDB.getTable("Metadata");
3: // Build the item

4 Item item = new Item()
withPrimaryKey("Chunk_ld", 206)
.withString("Chunk_Order", ”21")
.withString("ls_Folder", "0")
.withString("File_Name", "Project_A")
.withString("File_Extension", "doc")

10 /I Write the item to the table

11: PutltemOutcome outcome = table.putltem(item);

> © XN

Deleting an item

1: DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(new ProfileCredentialsProvider()));
3: Table table = dynamoDB.getTable("Metadata");

4: DeleteltemOutcome outcome = table.deleteltem("Chunk_ld", 101);

D. Based on user traffic pattern over a 24 hours period, the data is shown in the below table.

15

Parameters/Inputs 20% 30% 40% 45% 50% 55% 45% 35% 25% 15% 10% 5%
Number of concurrent users (N) 46 69 92 104 115 127 104 81 58 35 23 12
Page size (KB) 500 KB
Http request (KB) 10 KB
Http response (KB) 10 KB
Total Request/Responseize(MB) | 31.45 | 47.17 [6289 [71.09 |7861 [8682 |71.09 |5537 [39.65 |2393 |1572 |82
Single file size to download (MB) 10 MB
Total file data (MB) for all number | 460 690 920 1040 1150 1270 1040 810 580 350 230 120
of users MB MB MB MB MB MB MB MB MB MB MB MB
Hours of day
Service Time (A) (sec) 0.643 0.965 1.287 1.455 1.608 1.776 1.455 1.133 0.811 0.490 0.322 0.168
Service Time (B) (sec) 26.286 | 39.429 | 52,571 | 59.429 | 65.714 | 72.571 | 59.429 | 46.286 | 33.143 | 20.000 | 13.143 | 6.857
Wait Time (W) (sec) 0 0 0 0 0 0 0 0 0 0 0 0.000
Total Service Time (D) = (A+B) + W| 26.929 | 40.394 | 53.858 | 60.883 67.323 | 74.348 | 60.883 | 47.419 | 33.954 | 20.490 | 13.465 | 7.025
Average think time (Z) seconds 4.00 5.00 7.00 3.00 4.00 2.00 5.00 8.00 4.00 2.00 5.00 3.000
Total Response Time [R]=D + Z
(sec) 210.929| 385.394| 697.858 | 372.883 | 527.323 | 328.348| 580.883| 695.419 | 265.954 | 90.490 | 128.465| 43.025
Average Response Time [R avg]
[Rt]/N 4.585 5.585 7.585 3.585 4.585 2.585 5.585 8.585 4.585 2.585 5.585 3.585
Total Throughput (X)
[Requests(N) / sec] 1.487 | 1.520 1.512 1.628 1.612 1.663 | 1.579 1.462 1.528 1.556 | 1.246 1.197
Utilization U= X * D [%] 4005 | 6140 | 81.42 6931 | 5189 | 3189 | 1677 | 8.41
Table -A
E. Throughput & Utilization while extra instances are added to accommodate high traffic
Hours of day 1-2 3-4 5-6 7-8 9-10 11-12 1314 | 1516 | 17-18 | 1920 | 21-22 | 2324
Total Throughput [Rt/sec] | 1.487 | 1.520 | 1.512 | 1.628 | 1.612 | 1.663 | 1.579 | 1.462 | 1.528 | 1.556 | 1.246 | 1.197
Throughput X1 (Reg/sec) 1.487 | 1.520 | 0.756 | 0.814 | 0.806 | 0.832 | 0.789 | 1.462 | 1.528 | 1.556 | 1.246 | 1.197
Throughput X2 (Reg/sec) 0.000 | 0.000 | 0.378 | 0.407 | 0.403 | 0.416 | 0.395 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Utilization U= X * D [%)] 40.05 | 61.40 | 81.42 | 99.12 | 108.55| 123.67 | 96.11 | 69.31 | 51.89 | 31.89 | 16.77 | 8.41
Utilization U1 (%) 40.0% | 61.4% | 40.7% | 49.5% | 54.2% | 61.8% | 48.0% | 69.3% | 51.8% | 31.8% | 16.7% | 8.4%
Utilization U2 (%) 0.000 | 0.000 | 40.7% | 49.5% | 54.2% | 61.8% | 48.0% | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Table -B
F. Cost of computing Amazon EC2 instance
EC2 instance BW Enable | Cost($)/hr Hours Up Cost($)/Day
m3.medium 391.00 Y $0.1330 24.00 $ 3.19
m3.medium 391.00 Y $0.1330 10.00 $ 1.33
Max Bandwidth in (declared) 97.75 MB/s
Effective % of BW (achievable) 50%
Effective BW (MBps) 48.875 MB/s
Total Monthly Cost $ 137.92

Table -C

G. Cost of Amazon S3 data storage

16

Amazon S3 Storage (T,*A‘g’;g)hp“t Enable | Size (TB) | Cost($)/month/GB | Data Distribution (TB) | Cost($)/Month

1TB Tier 20 1 1 0.03 0.252 $ 7.74

2-50 TB Tier 50 0 49 0.0295 0.000 $ -

50-500 TB Tier 50 0 450 0.029 0.000 $ -

501-1000 TB Tier 50 0 500 0.0285 $ -

Throughput latency 50%

Actual Average Throughput | 17.5

Total Monthly Cost $ 7.74
Table -D (i)

H. Cost of Amazon S3 data transfer out

Amazon S3 Data Transfer out Enable Size (TB) | Cost($)/month/GB | Data Distribution (TB) Cost($)/Month

1TB 1 1 0.09 0.251893997 $ 23.21

Upto 10 TB 0 10 0.09 0 $ -

Upto50TB 0 40 0.09 0 $ -

Up to 150 B 0 100 0.07 $ -

Total Monthly Cost $ 23.21

Cumulative cost of data storage and data out

Table -D (ii)

I. Utilization table shows the three instances enabled during the halag ahd how many hours each instance is up.

Hours of day 12 |34 (56 |78 |910 |13 ﬁr 12’ 1373 %g’ g% gf{ Hours/Day
Total utilization 86 130 | 173 | 202 | 223 250 | 199 | 148 | 109 | 66 39 19

Instance 1 X X X X X X X X X 66 39 19 24
Instance 2 X X X X X X X X X 18
Instance 3 X X X X X 10

	I. Introduction
	II. Related Work
	III. Logcal Architecture
	A. Desktop Client
	B. Metadata Database
	C. Synchronization Service
	D. Message Queuing Service
	E. Cloud Storage
	F. File Processing

	IV. Cloud Deployment
	A. Amazon S3 - Cloud Storage
	B. Amazon SQS - Message Queuing Service
	C. Amazon EC2 - Synchronization Service
	D. Amazon DynamoDB - Metadata DB

	V. Performance and Cost Analysis
	A. Initial Assumptions
	B. Estimations
	1) Estimate of subscribers after one year (signed-up users): Estimated first year user subscriptions are calculated as per initial ballpark number of subscriber and then growth in subscription based on reasonable (random) percentage to achieve a total...
	2) Estimate of upload & download (Data-in & Data-out) file size: The average file size of 10MB will be used to test the different scenarios. 10MB file uploaded/download will be used as baseline for estimating required resources for application perform...

	C. Cost of Acquired Resources
	D. Use Cases
	1) Use Case 1: At the end of firs year, between 5%-50% of users from the total subscribers access the application in a day (0-24 hour period). The 24 hours will be divided into units of 2 hours. Therefore, there will be 12 units of measurement in a da...
	2) Use Case 2: Keeping the same condition as of Use Case 1, the file size of 10MB based on initial estimate will be increase to 50MB to test the performance and cost metrics. This is essentially stressing our initial ‘data size’ estimates and its impa...
	3) Use Case 3: Keeping the user traffic conditions as Use Case 1 and file size of 10MB (also as per Use Case 1), user traffic will be increased in this case. This is essentially ‘computing and network’ test and its impact on overall performance and cost.

	E. Performance Metrics of Resources
	1) Number of occurrences or Entities in the system [N]: Can be considered as number of simultaneous users accessing the application from perspective of our analysis.
	2) Total Response Time or Average time entity spend in a system [R]: From perspective of our analysis, this is total of service time of HTTP request and response and data downloaded from storage. This also includes wait time. Therefore total response ...
	3) Throughput or Arrival Rate [T]: Throughput is number of user served. This will be calculated in the unit of per second.

	F. Unit Calculation Using Available Data Variables
	G. Test for Use Cases (1,2 & 3)
	1) Use Case 1:
	Cost of resouces:
	2) Use Case 2:
	Cost of resources:
	3) Use Case 3:
	Cost of resources:

	H. Evaluation of running cost and proposed revenue model

	VI. Conclusion
	References
	Appendices

	Appendices
	A. Amazon S3 - Use of Programming Libraries
	B. Amazon SQS - Use of Programming Libraries
	C. DynamoDB - Use of Programming Libraries
	D. Based on user traffic pattern over a 24 hours period, the data is shown in the below table.
	E. Throughput & Utilization while extra instances are added to accommodate high traffic
	F. Cost of computing Amazon EC2 instance
	G. Cost of Amazon S3 data storage
	H. Cost of Amazon S3 data transfer out
	I. Utilization table shows the three instances enabled during the hours of day and how many hours each instance is up.

